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The combination of the Rietveld method together with a modeling of the peak shape is 
extremely useful when the materials under study suffer from bad crystallization. The presence 
of structural defects like dislocations, stacking faults, anti-phase domains, micro-strains and 
small crystallite sizes manifests in the diffraction pattern by a broadening of the Bragg peaks. 
In most cases the Voigt approximation for peak broadening is sufficient to get quantitative 
explanation of the existing defects through the different hkl and angular dependence of the 
broadening. In this paper we give an introduction to the treatment of microstructural effect 
using the program FullProf. 
 
Introduction 
 
The microstructural effects within FullProf are treated using the Voigt approximation: both 
instrumental and sample intrinsic profiles are supposed to be described approximately by a 
convolution of Lorentzian and Gaussian components. The TCH pseudo-Voigt profile function 
[1] is used to mimic the exact Voigt function and it includes the Finger‘s treatment of the 
axial divergence [2]. The integral breadth method to obtain volume averages of sizes and 
strains is used to output a microstructural file where an analysis of the size and strain 
contribution to each reflection is written. No physical interpretation is given by the program; 
only a phenomenological treatment of line broadening in terms of coherent domain size and 
strains due to structural defects is performed. The user should consult the existing broad 
literature to go further in the interpretation of the results. A recent book [3], gathering 
different articles, is a good introduction to microstructural problems. 
 
Some useful expressions for microstructural analysis 
 
A particular peak shape will be generally denoted as ( )xΩ , the argument is x T T= − h , (T is 
the scattering variable and Th the Bragg position) and the FWHM will be called H.  
Let us define explicitly the most important parameters defining the relevant peak shapes for 
microstructural analysis. The Voigt approximation is based on the assumption that the 
contribution of microstructural effects to the final peak shape can be approximated by a Voigt 
function: convolution of a Gaussian and a Lorentzian. The normalized Gaussian function is 
defined as: 
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The normalized Lorentzian function is defined as: 
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It is important to realize that the requirement of normalization (i.e. ( ) 1x dx
+∞

−∞
Ω =∫ ) is essential 

in a Rietveld program than can automatically perform quantitative phase analysis. This 
requirement is not common in the literature on microstructural analysis, where the parameters 
aG and aL are taken as the height of the peak. See the appendix for the relations between the 
parameters defining the both the normalized and non-normalized pseudo-Voigt functions. 
  
The Voigt function defined as the convolution of a Lorentzian and a Gaussian: 
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where  and G x  have different FWHM (( )L x ( ) LH  and , respectively). The shape of the 
Voigt function is determined by the relative importance of the two components . The 
Voigt function can be written in a closed form in terms of the complex error function and the 
integral breaths of the Lorentzian (

GH
( , )L GH H

Lβ ) and Gaussian components ( Gβ ): 
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where: 
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The pseudo-Voigt function, ( )pV x , is an approximation of the Voigt function that substitutes 
the two shape parameters LH  and  by the pair (GH , )Hη : 
 
 ( ) ( ) (1 ) ( ) 0 1pV x L x G xη η′ ′= + − ≤η ≤  (6) 
 
The ( )pV x  function is a linear combination of a Lorentzian ( )L′  and a Gaussian  of the 
same FWHM ( ) , so there are two parameters characterizing the peak shape: 

( )G′
H

, )( ) ( ,pV x pV x Hη= . If L’(x) and G’(x) are normalized, ( )pV x  is also normalized. It is easy 
to verify that the FWHM is the same for L(x), G(x) and pV(x). 



The integral breadth of a normalized pseudo-Voigt function is just the inverse of the 
maximum value. If the function is multiplied by a constant (integrated intensity) the integral 
breadth doesn’t change: 
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Numerically it is more easy and fast to calculate the pseudo-Voigt approximation (6) instead 
of directly using the expression (4). The mapping between the pairs (  and , )L GH H ( , )Hη  can 
easily be obtained using the numerical approximation provided by TCH expressions[1]:  
 

( , ) ( , )G LH F H Hη =  (8) 
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The inversion of the above two expressions leads to the relations: 
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The integral breath of the Voigt function is then calculated using the expression (7) of the 
pseudo-Voigt approximation, through the previous calculation of ( , ) ( , )G LH F H Hη =  using 
the expressions (9) and (10). 
The intrinsic profile of a particular reflection due to size effect has an integral breadth Sβ , the 
Scherrer formula: 
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gives the volume-averaged apparent size of the 
crystallites in the direction normal to the scattering 
planes. This apparent size has a perfectly defined 
physical interpretation: 
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or in terms of the normalized column-length distribution p
x
y

LhC

h=(h,k,l)

Figure 1 : Scheme for interpreting the 
apparent size of a particular grain (see 
text). 
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The integrals (15) give the average for all crystallites of the sample in reflection position (N) 
of the volume average of the length of the cords (column-length) normal to the scattering 
planes for each crystallite. It is clear that the relation of the apparent size with physical 
dimensions of the coherent domains is not direct. We should normally assume a particular 
average shape of the crystallite (e.g. spheres) in order to relate the apparent sizes obtained for 
different Bragg reflections with characteristics dimensions (e.g. diameter). 
 
The intrinsic profile of a particular reflection due to a strain effect has an integral breadth Dβ , 
the apparent strain is defined as cotDη β= θ  [4]. We shall use the so-called maximum strain, 
which is derived from the apparent strain as: 
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The relation of this definition of strain with the root-mean-square (RMS) strain can be found 
in the literature [3]. In the Voigt approximation the mean-square strain can be written in terms 
of the Gaussian and Lorentzian components and the distance L separating two cells along the 
normal to the scattering planes. If L is the undistorted distance and ∆L is the distortion, the 
local strain is ε(L)= ∆L/L, so the mean-square strain is: 
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The treatment of microstructural effects within FullProf 
 
There is a new file containing information about the microstructure (extension “.mic”) that is 
output only if the user provides an input file containing the instrumental resolution function 
(IRF, see manual for the different ways of giving resolution parameters). At present, this 
option works only for constant wavelength mode. 
The FWHM of the Gaussian ( ) and Lorentzian (GH LH ) components of the peak profile have 
an angular dependence given by: 
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If the user provides a file with the IRF, the user should fix V and W to zero, then the rest of 
parameters in the above formula have a meaning in terms of strains (U ) or size 
(Y I ) . The functions  and 

, ,Dα X

Z ), ,G α ( )ST DD α ( ZF α  have different expressions depending on the 
particular model used of strain and size contribution to broadening. The parameter ξ  is a 
mixing coefficient to mimic Lorentzian contribution to strains.  
 



The anisotropic strain broadening is modeled using a quartic form in reciprocal space. This 
corresponds to an interpretation of the strains as due to static fluctuations and correlations 
between metric parameters [5].  
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The metric parameters iα  (direct, reciprocal or any combination) are considered as stochastic 
variables with a Gaussian distribution characterized by the mean iα  and the variance-

covariance matrix C . Here we consider the set: ij { } { }, , , ,i A B C Dα =

hkl

,E F .The position of the 

peaks is obtained from the average value of M  given by: ( );ihklM M hα kl=
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broadening of the reflections is governed by the variance of M : 
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Where the non-diagonal terms may be written as product of standard deviations multiplied by 
correlation terms:C S ( , )ij i jS corr i j= . This original formulation can be used with a total 
control of the correlation terms that must belong to the interval [-1, 1]. When using this 
formulation the user cannot refine all parameters (up to 21) because some of them contribute 
to the same term in the quartic form in reciprocal space, however this allows a better 
interpretation of the final results. Taking the appropriate caution one can test different degrees 
of correlation between metric parameters. There are several special formulations, within 
FullProf, for working with direct cell parameters instead of using reciprocal parameters. 
 
A useful notation corresponding to a grouping of terms was proposed by Stephens [6] who 
also included a phenomenological Lorentzian contribution to the microstrains (the parameter 
ξ  in the equation 19). The final grouping of terms simplifies to: 
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The Stephens’ notation can also be used within FullProf. A maximum of 15 parameters can 
be refined for the triclinic case. Whatever the model used for microstrains the mixing 
Lorentzian parameter, ξ , may be used. In FullProf the function , being 2 (ST DD α ) Dα  the set of 
parameters C or ij HKLS , is given by: 
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An example of anisotropic strain refined 
using this formulation is shown in Figure 
2, where the neutron diffraction pattern of 
the low temperature phase of Nd2NiO4 is 
refined using the diffractometer D2B at 
ILL [7]. 

  S_400     S_040      S_004     S_220
22.04(78) 17.74(57)  0.016(2)  -38.8(1.2)
Lorentzian Parameter:  0.093(2)

Nd2NiO4, LT

A-strain h k l
43.4585  0 1 2
48.1172  1 0 2
 7.1018  1 1 0
 5.9724  1 1 1
 4.1383  1 1 2
 9.7952  0 0 4
 4.0162  1 1 3
79.5271  0 2 0
87.5578  2 0 0

Figure 2: High angle part of the neutron powder
diffraction pattern (D2B, ILL) of the low temperature
phase of Nd2NiO4 [11]. (top) Comparison of the
observed pattern with the calculated pattern using the
resolution function of the diffractometer. (bottom)
Observed and calculated pattern using an anisotropic
model of strains with non-null values given in the
panel. A list of apparent strains (x 10-4), extracted from
the microstructure file, for a selected number of
reflections is also given. 

 
Concerning anisotropic size broadening it 
is possible to use a very general 
phenomenological model, using the 
Scherrer formula, that considers the size 
broadening can be written as a linear 
combination of spherical harmonics 
(SPH). At present the anisotropic size is 
supposed to contribute to the Lorentzian 
component of the total Voigt function. A 
Gaussian contribution will be introduced 
using a mixing parameter similar to that 
used for anisotropic strain. The explicit 
formula for the SPH treatment of size 
broadening is the following: 
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Where βh  is the size contribution to the 
Figure 3: Simulated “observed” powder 
diffraction pattern corresponding to a single 
component (tetragonal aluminum oxide) of a 
multiphase real sample containing crystallites of 
nanoscopic size. The observed pattern has been 
calculated using the parameters determined for 
the  real material.  (a) Comparison of the 
instrumental resolution function of a CuKα
powder diffractometer with the “observed” 
pattern, (b) Rietveld refinement using an 
isotropic model, (c) Rietveld refinement using 
spherical harmonics

(a) (b)

(c)Figure 3: Simulated “observed” powder 
diffraction pattern corresponding to a single 
component (tetragonal aluminum oxide) of a 
multiphase real sample containing crystallites of 
nanoscopic size. The observed pattern has been 
calculated using the parameters determined for 
the  real material.  (a) Comparison of the 
instrumental resolution function of a CuKα
powder diffractometer with the “observed” 
pattern, (b) Rietveld refinement using an 
isotropic model, (c) Rietveld refinement using 
spherical harmonics

(a) (b)

(c)



integral breadth of reflection h, and ( ),lmpy Θ Φh h  are the real spherical harmonics with 
normalization as in [8]. The arguments are the polar angles of the vector h with respect to the 
Cartesian crystallographic frame. After refinement of the coefficients a  the program 
calculates the apparent size (in angstroms) along each reciprocal lattice vectors if the IRF is 

provided in a separate file. 

lmp

 
In Figure 3 we can see the aspect of the 
refinement of a diffraction pattern 
corresponding to a tetragonal material 
(aluminum oxide) and, in  Figure 4, the 
visualizing of the results obtained by 
reading with GFourier  [12] the output 
binary file generated with FullProf when 
Jvi=5 
 
An important type of defects that give rise 
to size-like peak broadening is the presence 
of anti-phase domains and stacking faults. 
These defects produce selective peak 
broadening that cannot be accounted using a 
small number of coefficients in a SPH 
expansion. In fact only a family of 
reflections verifying particular rules suffers 
from broadening. For such cases there are a 
number of size models built into FullProf 
corresponding to particular sets of 
reflections that are affected from 
broadening. In Figure 5 it is represented the 
case of Pd3MnD0.8 [9] of structure similar to 
Au3Mn and showing the same kind of 
defects: anti-phase domains [10].  
In Figure 6 a portion of the final 
microstructural file is shown. 
 
Other models for size broadening in 
FullProf following particular rules for each 
(hkl) are available. Moreover an anisotropic 
size broadening modeled with a quadratic 
form in reciprocal space is also available. 
The expression presently used in FullProf is 
the following: 
 

( )2 2 2 2
s 1 2 3 4 5 6( ) k  d  ZF h k l kl hl hα α α α α α= + + + + +α k  

c

a

a

b

b

c The visualization of the average crystallite 
shape is done by using GFOURIER to read 
the binary file: myPCR_size_n.bin 
generated when an IRF file is used and Jvi=5
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c The visualization of the average crystallite 
shape is done by using GFOURIER to read 
the binary file: myPCR_size_n.bin 
generated when an IRF file is used and Jvi=5
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Figure 4: Visualisation of the average crystallite 
shape obtained from refinement of spherical 
harmonics coefficients in a tetragonal material. 

Figure 5: Portion of the neutron diffraction pattern of
Pd3MnD0.8 at room temperature obtained on 3T2
(LLB, λ = 1.22 Å). On top, the comparison with the
calculated profile using the resolution function of the
instrument. Below the fit using IsizeModel = -14.
Notice that only the reflections with indices of
different parity are strongly broadened. An isotropic
strain, due to the disorder of deuterium atoms, is also
included for all kind of reflections. 



Where ks is defined as ks=360/π2 × λ 10-3 for the 2θ space and ks=2/π × Dtt1 10-3 for TOF and 

Energy space. Simple crystallite shapes as infinite platelets and needles (IsizeModel = 1 
and –1, respectively) are also available. 

!  MICRO-STRUCTURAL ANALYSIS FROM FULLPROF (still under development!) 
!  ================================================================== 
!  Pattern No:  1 Phase No:   1 Pd3MnD.8 - CFC 
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
!  Integral breadths are given in reciprocal lattice units (1/angstroms)x 1000
!  Apparent sizes are given in the same units as lambda (angstroms) … 
!  Apparent strains are given in %% (x 10000) (Strain= 1/2 * beta * d) 
!  An apparent size equal to 99999 means no size broadening 
............................................................................. 
! 
!  The standard deviations appearing in the global average apparent size and  
!  strain is calculated using the different reciprocal lattice directions. 
!  It is a measure of the degree of anisotropy, not of the estimated error 
 
 ...   betaG     betaL ...  App-size App-strain    h     k     l     twtet ...
 ...  1.4817   11.5859 ...     93.58   41.6395     1     0     0   17.7931 ...
 ...  2.0954   11.9584 ...     93.58   41.6395     1     1     0   25.2665 ...
 ...  2.5664    1.5573 ...  99999.00   41.6395     1     1     1   31.0743 ...
 .............................................................................
 ...  4.6855   13.5301 ...     93.58   41.6395     3     1     0   58.5562 ...
 ...  4.9142    2.9820 ...  99999.00   41.6395     3     1     1   61.7169 ...
 ...  5.1327    3.1146 ...  99999.00   41.6395     2     2     2   64.7864 ...
 ...  5.3423   13.9286 ...     93.58   41.6395     3     2     0   67.7802 ...
 ...  5.5440   14.0510 ...     93.58   41.6395     3     2     1   70.7114 ...
 .............................................................................
 
Figure 6:  Portion of the microstructural file (extension mic) corresponding to the fitting of the neutron 
diffraction pattern in Figure 5.  
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a=5.187 Å,  c=24.123 Å

Broadening: (hkl), l=2n+3

 
Figure 7: Selective size broadening observed by
neutron diffraction at room temperature (3T2, LLB)
for superstructure reflections in Ca2MnO4[11]. (top)
Size parameter fixed to zero. (bottom) Single size
parameter according to the rule (hkl), l=2n+3. The
indices of the most intense Bragg reflections affected
by size broadening are also given. 

Together with the size broadening models 
built into FullProf and described above, 
there is another way of fitting independent 
size-like parameters for different sets of 
reflections. The user may introduce 
his(her) own rule to be satisfied by the 
indices of reflections provided the rule can 
be written as a linear equality of the form: 

1 2 3 4n h n k n l n n n5+ + = +

i

. Where n  is an 
arbitrary integer and  are 
integers given by the user. A size 
parameter is associated to each rule (a 
maximum of nine rules may be given per 
phase) that may be refined freely or 
constrained using the codewords 
appropriately. 

( 1,2, )n i = ...5

 
To access this option in FullProf the value 
of IsizeModel should be in the interval 
[-2,-9]. The absolute value of 
IsizeModel corresponds to the number 
of rules (independent parameters) to be 
given. If all ni=0 the rule is not used. To 



give a single rule one must put IsizeModel = -2 and put zeros for the last condition. This is 
needed in order to avoid the confusion with the case of an infinite needle. In Figure 7 we give 
an example using IsizeModel = -2 and if Figure 9 the relevant part of the PCR file is 
written. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . 
! Selective Size-Broadening: 
! hkl cond.      (n1.h + n2.k + n3.l=n n4 +/- n5)   Size-par      Code 
  0  0  0          0      0      1      2      3     9.61440   661.000 
  0  0  0          0      0      0      0      0     0.00000     0.000 
 
Figure 8: Portion of the PCR file for IsizeModel = -2 corresponding to the refinement in Figure 7. The 
first set of zeros below the text ‘hkl cond.’ is not used at present.
inally, a general formulation for peak shifts, due to defects or to residual stresses, has also 
een implemented. For JSOL≠0, the lines corresponding to shift parameters are read in the 
CR file. Selective shifts can be selected when IShif < -1. For this option a set of up to 
BS(IShif) (≤10) lines can be given. The lines define rules to be satisfied by reflections 
ndergoing shifts with respect to the theoretical Bragg position due to some kind of defects 
stacking and twin faults for instance).  The rules are similar to those of selective size 
roadening discussed above. The position of the reflections satisfying the rules are displaced 
ccording to the expressions: 

 
2θS  =2θB + 2 Shift d2 tanθ × 10-2  (2θ space) 

TOFS=TOFB − Shift d3 Dtt1 × 10-2  (T.O.F. space) 
ES=EB − Shift/(2d) Dtt1 × 10-2  (Energy space) 

 
here the index B stands for the theoretical Bragg position of the non-defective material and 

hift is the shift parameter to be refined.  
he shift of Bragg reflections may also be due to external stresses or residual stresses. For 

hose cases it is more appropriate to use the following generalized model for shifts. The model 
s implemented for IShif = 100+NumLaue (with NumLaue the number of the Laue class 
ccording to FullProf manual) , and a set of parameters corresponding up to quartic form in 
kl can be refined. The position of a reflection is displaced according to the expressions: 

2θS  =2θB + 2 Sh d2 tanθ × 10-2  (2θ space) 
TOFS=TOFB − Sh d3 Dtt1 × 10-2  (T.O.F. space) 

ES=EB − Sh /(2d) Dtt1 × 10-2  (Energy space) 

he expression used for calculating the scalar Sh for reflection h is given by: 

{ 2} { 4}

2 4h
H K L H K L

HKL HKL
H K L H K L

S D h k l D h k l
+ + = + + =

= +∑ ∑  

he free parameters for this option are the sets 2HKLD and 4HKLD . To refine these parameters 
he average cell parameters of the non-stressed material should be fixed during the 
efinement. 

inally, in the desperate case where a simple rule for the hkl dependency of peak broadening 
nd shifts cannot be easily obtained, there is the possibility of relaxing the peak broadening, 



with respect to the resolution function, and the shifts, with respect to the Bragg positions, for 
individual reflections. This can help in determining a posteriori a physical rule governing the 
behavior of  broadening and shifts. An example of the relevant part of a PCR file in which this 
last option is used is given in Figure 9. 
 

 

!----------------------------------------------------------------------- 
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern# 1:  1.06 
!----------------------------------------------------------------------- 
 Myphase 
! 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth     ATZ   Nvk Npr More 
   6   0   0 0.0 0.0 1.0   0   0   0   0   0     5050.20   0   7   1 
! 
!Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp  Nsp_Ref 
   0   0   0   0   0   0  1.0000  0.0000  0.0000  0.0000   1   3 
! 
P 3 1 c                  <--Space group symbol 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 
  0.00000  0.00000  0.07373  0.01902  0.00000  0.00000  0.00000  0.00000 
     0.00     0.00   251.00   241.00     0.00     0.00     0.00     0.00 
! Special reflections: 
!  h   k   l  nvk   D-HG^2    Cod_D-HG^2  D-HL   Cod_D-HL    Shift   Cod_Shift 
   1   0   1    0  0.00000       0.000  0.04417   551.000  -0.01236    561.000 
   2   0   0    0  0.00000       0.000  0.03056   571.000  -0.00274    581.000 
   3   0   1    0  0.00000       0.000  0.00759   591.000  -0.00119    601.000 
 
 
Figure 9: Portion of the PCR file when Nsp_Ref ≠ 0. In red there are the important parts concerned with 
this option. Notice that we need to give explicitly the indices (en eventually the propagation vector for
magnetic structures) of the reflections suffering from anomalous broadening or shift. The Gaussian and
Lorentzian broadening shifts with respect to the instrumental resolution width, as well as the shift with 
respect to the calculated value of the peak position using the cell parameters, are free variables. 

Note: A non-negligible part of the present text has been previously published in [13]. 
 
 
Appendix 
 
The non-normalized pseudo-Voigt appears in many papers. Let us call the non-normalized 
function as: 

( ) ( ) (1 ) ( )n n n n npV x L x G xη η= + −   (0) 1npV =  
where: 
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2( ) exp( ) (0) 1n G nG x b x G= − =  
 
The integral breadth of a non-normalized pseudo-Voigt function of peak intensity I0 and 
FWHM=H is given by: 
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The integral breadth of a particular peak is independent of the formulation of the pseudo-
Voigt function. Both descriptions give the same FWHM and the same integral breadth, so the 
numerical relation between the η values is given by: 
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