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The Rietveld Method (RM) is being used from 1969, then this year is the 28th anniversary of the
famous paper introducing the technique, by H.M. Rietveld, in Journd of Applied Crystalography.
During the last 18 years many crysta and magnetic structures have been refined using this method.
Neutron powder diffraction (NPD) is the most advantageous technique for usng the RM due to the
smple peak shape produced by the relatively coarse resolution of neutron diffractometers.

In these notes we give a short review, a an introductory level, of some topics concerning the study
of crystd structures by means of neutron powder diffraction. A summary of the rdevant scattering
formulae used the andysis of powder diffraction data is given. The use of neutron powder diffraction
for determining crystd structures of defective materids is illustrated in different cases. Particularly
important is the extenson of the Rietveld method to investigate the microstructure of solids where the
defects cause an anisotropic broadening of the Bragg reflections.
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1. Introduction.

Neutron scattering is a very powerful tool for the study of condensed matter from many points of
view. The therma neutron is a particle that alows the study of both structurd and dynamical aspects
of matter, due to its unique features. absence of dectricad charge, wavelength comparable to that of
interatomic distances, energy of the order of of the energy of therma excitaions (phonons and
magnons) and magnetic momern.

In these notes the Structurd aspects of crysdline solids will be stressed. For this reason the
dynamica and magnetic aspects of the neutron-matter interaction will not be discussed. The problem
to be addressed is that of obtaining quantitative information about the crystal structure and nature
and concentration of structurd defects in crysaline solids. It is assumed that readers know the
edementary theory of diffraction, the reciproca lattice concept and the fundamentas of
crystdlography.

X-ray and neutron diffraction techniques provide quantitative datistical information on crystd
structures and defects averaged over volumes from about 103 to a few cmB, respectively. Electron
diffraction and microscopy probe volumes of many orders of magnitude smdler than X-rays or
neutrons (10-19- 1017 cmB). This fact is important in correctly interpreting the nature of the
information provided by the different diffraction techniques.

The notes are organized as follows: in the first part, the theoretica background of diffraction by
cayddline solids, eventudly with structurd defects of different types, will be summarized. In the
second part the intengity formulae for the powder method are emphasized with the discusson of the
fundamentds of the Rietveld Method (RM). In the third part we give a short presentation of the
resolution requirements of a two-axis neutron diffractometer to be ussful for crystal dtructure
refinements and for the so called ab initio structure determination. In the third part, different types of
approximation used in studying real materids by means of Neutron Powder Diffraction (NPD) are
described. In particular the cases where the shape of Bragg reflections contains useful information
because it is strongly affected by the interaction between defects. For ingtance, isotropic and
anisotropic broadening due to smal coherence length of domains and strains produced by defects.
The extended Rietveld method is the most powerful tool for refining smultaneoudy a structura and a
microstructura modd. The structurd modd is given by the standard crystallographic parameters and
the microgiructurd modd is characterized by a shape and width of reflections depending on  hkl
indices through size and dsrain parameters. Severd examples will be presented and discussed in
some detail for oxides of the family Lny_,SryNiO 4.4

1. Theoretical Background of Scattering from Polycrystalline Materials.
In scattering experiments, the incident particle (neutron, eectron, photon...) experiences a change in

its momentum and energy. In neutron scattering the quantities:
(N2p)Q =(W2p)(kg-k)=h's hn=E¢-E



represent the momentum and energy change experienced by the particle in the interaction with the
target. F and | subscripts stand for find and initid state of the particle, respectively. The wave vector
of the particle is the conventiond definition, (k=2p/l ) and the energy is the classcd kinetic energy
(E= % m V). In the following we shall be concerned with eastic scattering (in==0) for which
ikgi=ik;i= 2p/l andiQi= Q = (4p/l ) Inq, q being hdf the scattering angle. In these notes we
shdl use, either the scattering vector used by neutronists, Q, or the conventiond “crystallographic
scattering vector” s = Q/2p.

In this section we shdl give a short review of the scattering formulae to be applied in the study of
crysa sructures by diffraction methods. The reader interested in a degp understanding of the
scattering by cryddline matter with defects must conault the literature and particularly the three
books of Guinier, Warren and Cowley! respectively, on which most of the following theoretica
discussion is based. For a theoretica trestment of al aspects of neutron scattering see the books
from Lovesgyl.

In the kinematic theory (first Born approximetion), the amplitude of the wave scattered by an object
is the Fourier transform (FT) of its scattering density (SD) r (r) measured in c2. The SD means
different things for each kind of scattered radiation (X-rays, neutrons and eectrons). Any object can
be considered as condtituted by atoms of SD r 4(r) centered at positions R;; the SD and the
corresponding scattered amplitude and intensity can be written as.

r(r=a,;r40-R) [1]

A(S)= (§ i1 4(r-Ry) exp{2pisr} dr=a jexp{ 2pisR;} ¢} 5(U) exp{ 2pisu} 2]
A(s) = &, () exp{2pi s R} 3]

I(5) = A(S)A(S) = &, f(S) fi(S)" exp{2pis (Ri-Ry)} [4]

The last two formulae are the basis for the dructura study of any kind of materid by dadtic
scattering. The scattering factor of the atoms f(s) = FT[r 4(r)], given in units of length, is the link
between the fundamentd interaction of each particular radiation with matter. The different ways of
writing the equation [4] provide specific and smplified formulae for each kind of idedized or
defective structure and for different experimenta conditions.



For powders, we have to average the intensity for al possible orientations of an object with respect
to the incident beam. The intendity depends on the length, s, of s and the whole set of interatomic
distances R;=eR-R;& and is given by the Debye formulaiin terms of Q=2ps.

Q) =&, &% sn{QR; H(QR) [5]

If we congder the therma motion of the atomsit is easy to show that the equations [3] and [4] hold
by subgtituting the scattering factors by f(s)exp[-W,(s)]. Here the exponentia function is caled the
temperature or Debye-Waller factor. In the harmonic gpproximation W(s) can be written in matrix
form as?: Wi(s) = 2p2sTauuT,fs , where u is the column vector of aomic displacements and the
superscript T denotes trangpose. For simplicity, if not given explicitly, the temperature factors are
considered to be included in the scattering factor. Other kinds of scattering due to thermal motion,
e.g. theemd diffuse scattering (TDS), have to be added to equations [4-5] but will not be considered
here.

A paticularly useful language to describe the diffraction phenomena is that of convolutions and
digributions. Thisisillustrated in the following paragraph.

If crystalline matter is conddered as an infinite assembly of unit cells with scattering density r (1) (=0,
for r outsde the unit cdl), the total scattering dengity of the infinite object can be decomposed in the
following way:

Fy() =, 1 (R =1 () @, d(r-R,) =1 (1) * Ar)

where, x denotes convolution product, d(r) isthe Dirac function, R, is the vector postion of the n-
th unit cell (direct lattice vector) and z(r) = é.n d(r-R,,) is the digribution function of an infinite
lattice. For afinite crystd z(r) must be replaced by z(r)g(r) , where g(r) is the shape factor of the

crystd defined as g(r)=1 for r ingde the crystd, and g(r)=0 for r outsde. The scattered amplitude
for afinitecrysd is

A)=FT{r (1)} =FT{r (1)« 2o} = F(s) Z(S)« G(s)=F(S)V & 1 G(s-H) [6]

where F(s) is the Structure factor of the unit cell, which can be formdly written as equation [3] but
with the sum extended to the atoms of a single unit cdl. Z denotesthe FT of z, and G the FT of g. It

can be demondtrated that Z(s) = 1V, a y d(s-H), where V. isthe volume of the unit cdl and H is a



reciprocal lattice vector. That is the judtification of the last equdity in [6]. G(S) is a ddta function for
an infinite crystd, in that case the equation [6] expresses the fact that scattering exists only in the
direction ke=k,+2ps, for orientations of the crystal with respect to the incoming beam satisfying the
Laue condition s=H. This can be geometricaly illusrated by the well known Ewald congdruction: a
diffracted beam exigs only if thereisa

node of the reciproca lattice in contact with the Ewald sphere. The Bragg law is a consequence
because s=use=23ng/l , and tH=1/dy. If the sample is present as a crystdline powder, dl the
orientations are available and the reciprocd |attice can be represented by a set of concentric spheres
intersecting the Ewald sphere; and giving rise to diffracted beamsin cones.

For afinite crysd, of volume V, condituted by a sufficient number, N, of unit cdls, G(s) is different
from zero only in the vidnity of the origin. The intengty is given by:

1(8)=F2(s)V2, & |,G(s-H) & 1, G (s-H)I»NF2(S)/(VV )& 4 G(s-H) 7]

For finite crystds the intengity distribution in reciproca space is determined by the square of the FT
of the shape factor G(s-H). The region around each reciprocd lattice point, where G(s-H) is
ggnificantly different from zero, is caled a "reflection domain”. If the crystd has a plate-like shape
the reflection domain is a sort of "cigar” perpendicular to the basd planes. The smaller the thickness
of the platdet, the longer is the cigar. For a two dimensonad crystd the diffraction domains are
infinite rods.

The finite Sze of a crystd is an unavoidable defect. If the crystds of a powder are very smdl the
diffraction pattern shows broadened peaks.

It can be demonstrated that the function GX(s) is the FT of the autocorrdation of the shape factor
defined as.

V-h (r):(‘g(u)g(r +u)dBu [8]

Theinterpretation of h(r) is straightforward: it represents the fraction of the total volume shared
in common between the object and its "ghost" displaced by the vector r. Obvioudy, h(0)=1 and
decreases as r increases (see figure 1).



Crygdline defects can be of many different types point defects such as vacancies and
interditids, clusters of point defects, displacement and subgtitutional disorder, microdomains,
twinning, microtwinning, intergrowth, stacking faults, antiphase domains, and drain fieds due to dl
kinds of imperfections. However, in many defective crystasit is aways possible to define an average
lattice.

Figure 1: Two dimensional representation of the intensity distribution in reciprocal space for the case
of (a) small crystallites without defects and (b) a defective material in which the strong
correlation between defects produces an anisotropic broadening of Bragg reflections. A
scheme for the inter pretation of the V.h(r) function is also shown.

In such cases, the structure factor of each unit cell can be different and the equation [4] holds by

subgtituting the structure factor of each cell for the scattering factors of the aoms. The postion
vectors become vectors of the average lattice. Furthermore, the intensity formula can be rewritten as:

1(s) =8 n(é m FmF men) ©Xp{2pi s R} (9]



Taking into account the long range homogeneity of the object, the average vaue p=&FF m.nfl IS
independent of m. The number of terms in the inner sum of [9] is given by Vh(R,))/V, and the
equation [9] can be transformed to:

1(9) = VIV & D (R o men1€P{ 201 SR} = N &, h(R,) Py Xp{2pi SR}

If we define the average structure factor as F= &i=1/N a mFms @nd write f =F-F,, it is easy to
see that p=F2+& f " hnfi = F2+F |, and the intensity formula [10] can be further decomposed in
two terms:

I(S) :IBragg+|Diffuse:N F2 é nh(Rn) eXpZ{pi S Rn} +N é nh(Rn) F n e>(p{2pi S Rn}

= NFYVV)a,Gs-H) + Na,F,exp{2pisR}

In the last expression, we have made the approximation h(R,)=1 because F,, decreases with n
fagter than h(R,). If the correlations between different unit cells are wesk, the main term contributing
to the "diffuse scattering” is n=0. In that case we have Iy, N{ &2+ &F}. When correlations
between fluctuetions are strong up to a sufficient number of unit cels, F , decreases dowly with n,

and the intengity is concentrated around the nodes of the average reciprocdl lattice. The result is a
broadening of the Bragg reflections and the separation between diffuse and sharp scattering is not so
clear-cut. In generd the function F , =F (R,,) depends aso on the scattering vector s and can even
be a periodic function giving rise to the gppearance of satdlite peaks characteristic of modulated
structures.

The formulae given above are very generd and there are many particular casesin the literature where
the expressions can be further developed making explicit the physical magnitudes of interest.

An important Stuation occurs where the structure factor for the cell m can be written as the average
Sructure factor multiplied by a phase factor of the type exp{2pisu,,}. That means the effect of the
gructural defects is manifested mainly asa"strain” on the average lattice. We have: F=F exp{2pi s

Uy}, with the condraint: a meXp{2pi s u,}=0. Equation [10] can be written as:

I(s) =N F2A h(R,) z(R,, S) exp{2pi SR} [12]

where z(R,, S)= &xp{2pis(U-Uy.+)} i The expresson [12] is a quas-Fourier series. The
dependence on s of the drain coefficients destroys the smilarity. However, if we consder the



scattering in the firg Brillouin zone around a Bragg reflection and a samooth variation of z with s, we
can writefor s=H+Ds:

14(Ds) =N F2 8 h(R,) z4(R,) exp{2pi Ds R} » F2; Wy(Ds)

where Wy (Ds) is the "sngle crystd™ intringc profile of the Bragg reflection, which is expressed as a
Fourier series of coefficients given by a product of size, h(R,,), and strain, z(R,,), coefficients. In
order to separate the two effects it is necessary to measure different orders of a reflection, i.e. H,

2H, 3H... A new averaging step is necessary to arrive at the powder expression which is smilar to

[12] (see, for instance, the book of Warren in reference 1). In theory, the size coefficients for a
particular (hkl) reflection can provide, through a second derivative, the diameter distribution over the

sample, perpendicular to the ki) planes (see reference 1). A smilar case holds for the strain

coefficients. In practice, the intrindgc profile is convoluted with the ingrumentd one, and it is in

generd very difficult to obtain the Fourier coefficients with sufficient accuracy due to peek overlap.

For crystds of low symmetry it isimpossible and gpproximations have to be made.

2. Fundamentals of the Rietveld Method

Equation [11] when developed for a powder with well resolved Bragg reflections, can be written as
follows

Yi= Sy Iy WT; -Ty) + D + B, [14]

wherey; is the number of counts, the subscript "i" represents a discrete observation at the scattering
varigble T;. Here we adopt the variable T to describe ether, the scattering angle 2q, the time of flight
t (TOF, if aneutron pulsed source is used) or the scattering vector modulus Q or s. H corresponds
to Bragg peaks contributing to the channd "i". I, isthe integrated intensity of the reflection H, W(T; -
T,) isthe vaue of the normalized profile function of the Bragg reflection at the postion T, due to the
reflection H a the podtion T,,. D;, is the diffuse scetering due to defects. Findly, B; is the
background coming from other sources (TDS, incoherent scettering, indastic, sample environment,
etc.).

The diffuse term O contains a spherica average of the second term of equation [11]. A detailed
andyticd expresson for the generd case is not very useful, but an approximation condgting in a
Debye-like expression holds:



D, =D(Q)=4, a; SM{ QR }/(QR) [15]

The number of terms to be considered in the sum, and the interpretation of the coefficients a; and
distances r;, depend on the particular defect model. To obtain the maximum informetion from the
powder diffraction data experimentaly, absolute values (corrected for indadticity and sample
environment) of the intengties have to be collected in order to be ale to separate the different
contributions to the intringc background. Only under these conditions can the diffuse scattering term
be handled quantitatively. Some examples of the use of this term can be found in reference 3.

The information about the average crystd structure is contained in I (~F2) and Ty (through the cdll
parameters). The size and shape of the reflection domains as well as the strains produced by the
defects contribute to the profile function W(T).

In modern treatments of powder diffraction patterns the Rietveld method* (RM) is commonly used.
In the classcad RM, the weighted sum of squared difference between y;,s and Vi [14] is
minimized. If the set of model parametersis 3 =(13, 13, ...[3p), the Rietveld method tries to optimize
the chi-square function:

%y = SiWi {Viobs - Viea(®)} 2 [16]

where w; is the inverse of the variance associated to the observation “i” (S 2(Yigps)-

The functions |, W, D and B, are caculated on the basis of a particular structurd model and some
empirica functions depending on a number of adjustable parameters.

The integrated intendty for a Bragg reflection is given by:

l,={i{LAOEF}, [17]

where j is the multiplicity, L=1/(2sn?qcosq) is the Lorentz factor for constant wavelength neutrons,
in the case of TOF we have L=d*snq, A is the absorption correction, O is a function to correct, if
needed, for preferred orientation, E is the primary extinction correction and F is the Structure factor
of the average unit cell. For a review of the RM the reader is referred to the reviews summarized
under reference 5.



In the last few years, the RM has been used for the study of crystdline materids with defects, usudly
handling only the average structure. This can be done in cases where the interaction of the defects
does not have a big effect on the shape of Bragg reflections: the profile function and the haf-width
parameters are not very different from the insrumental ones. The structural parameters are contained
in the expression of the structure factor of the unit cdll:

F(H)=& =y} by @ o=1,p ©XP(-HT [b], He) exp{2pi (HoT 1, + HT t)} [18]

where the firg summation runs over the number m of aoms in the asymmetric unit, p beng the
number of symmetry equivalent postions, and n is the occupation factor of atom r (for a fully
occupied dte n is the multiplicity of the Ste divided by p). Hg isdefined as H T = HT [R], where
[R]s is the (3x3) matrix representing the rotational part of the symmetry operator s, tg is the
corresponding trandational part. The symmetric (3x3) matrix [b], represents the anisotropic thermal
parameters of aom r; it is related to the displacement matrix by: [b],=2p2au,u’ A with displacement
vectorsin fractions of the unit cdll parameters.

It is worth mentioning that for defective materias, the occupation factors and the digplacement
parameters are of magjor importance. In practice, [b], contains, not only the therma vibration of
atoms, but dso dl other static displacements from the ideal positions dueto local strains or disorder.
The two components, static and dynamic, of [b], can be distinguished by making the gppropriate
temperature dependent diffraction experiment. In cases where the scattering dengity is smeared out
due to non-wdll-locdized atoms (for instance, ionic conductors) one can use higher order expansons
(asin anharmonic probakility density functions)® to describe the Situation.

The procedure used in practice to minimize the expresson [16] is iterative as the problem to be
solved is non linear. If the counting dtatistics follows a Poisson didribution and the count rate is
sufficiently high to gpproach a gaussian, then s 2= Yiqp,e. The minimum condition of ¢2,, with respect
to the parameters 3 implies that the gradient ﬂc2p/ﬂf3 should be zero. A Taylor expansion of yi4(13)
around an initial set of parameters 13, alows the gpplication of an iterative process. The shifts to be
goplied to the parameters at each cycle for improving 02p are obtained by solving a linear system of
equations (norma equations): A di3 = b, where the symmetric matrix A, of dimenson P x P, and the
vector b have as components.

Aw= Siwi (Wica (B)MIB) (Tica (Bo)/IR) [19]

by = Si Wi {Viobs - Yica(Bo)} (Wica (Ro)/1I13) [20]

The norma equations of the non linear least square procedure take the form:



SA dBy =Dy [21]

the shifts of the parameters obtained by solving [21] are added to the Starting parameters giving rise
to anew s, 3,= B, + dfi3 , wich are closer to the optimum set 3,,. The new parameters are
consdered as the starting ones in the next cycle and the process is repeated until a convergence
criterium is satisfied. The standard deviations of the gusted parameters are caculated by the
expresson:

s2(1%) = (AY); ¢, [22]
where c2, =c2; /(N-P) is the reduced chi-square.
3.Requirements of powder diffractometersfor crystal structurerefinement.

We shdl be concerned only with high resolution powder diffraction, then the “banana’-type
position sendtive detectors which are extremely useful in magnetism and kinetics studies will not be
discussed here. In these notes, instrumental aspects of NPD are not treated in detail; the reader is
referred to the works of Hewat and David et al.” for congant wavdength and time of flight
diffractometers respectively.

High resolution powder diffractometers, conceived for crystd structure refinements in constant
waveength environment, use Ge-monochromators in order to get the highest intengity at high take-
off angle and diminate | /2 contamination. The high take-off angle is needed for matching the best
resolution with the highest reflection overlap, which occurs & an angle higher than 23=100° (see
reference 10).

Using the well known Caglioti’s relations one can caculate an approximate resolution function
of the two axis diffractometer (Fig. 2). The full width a haf maximum (Fwhm) of Bragg reflections
varies with the scattering angle, 2q, following the expression:

FWHM (2q) = (Utan?g+Vtang+W) Y2 [23]

where the parameters U,V and W can be written in terms of the angular divergence of the incoming
neutrons to the monochromeator, a 1, the angular aperture of a monochromator-to-sample collimator,
a,, the collimation between sample and detector, a3, the take-off angle of the monochromator,
20, and itsmosaicity, b. The Caglioti-Paoletti-Ricci equations for the parameters U, V and W are:



Detector

Radiation source

oy
Monochromator
with mosaic spread By,
Fig. 2- Powder diffraction geometry (Caglioti et al.)

U =4(aq2a,? + a,2b2 + a,2b?)/[tartqg,, (a 12+ a2+ 4b2)]
V=-4a2(a2+2b2)[tany, (a 2+ a2+ 4b2)] [24]

W =[a,%a,2+a,2a3? +ajas?+ 4b(a2+az?)]/ (a 2+ a+ 4b?)

the minimum of the resolution curve [19] occurs &:

tan g =-V/2U=a,2 (a2 + 2 b2)tanq,/2(a%a,2 + a12b2 + a,2b2) » tanq, [25]

the last approximetion holds only if a<<b, a,. As discussed in reference 10, the best resolution
conditions can be obtained with a ,=2b >a » a .

For instance, in the case of D1A, a LLB, we have the parameters, 20,,,=131.4, b »20' and a3 »
10'. The effective collimation, a 1, can be calculated from the characteristics of the guide (natural Ni)
and is given by the expression: a;(in minutesof ac) =12’ | (inA).

What is important to discuss the performance of a powder diffractometer, for sructure
determination and refinement, is the comparison between the resolution curve and the average
separation between adjacent Bragg reflections. In comparing different insruments with different
wavelengths the resolution curves must be represented in reciproca space. As is usud in neutron



scattering literature we shall use the scattering vector modulus Q=4psng/l as the naturd “distance
to the origin” in reciproca space.

We shdl establish ample criteria for determining the capability of a powder diffractometer,
characterized by its resolution function, in providing good data for Sructure determination and
refinement. In principle the complexity of a crystd dructure can be conddered as something
proportional to the number of free parameters to be refined. The number of free parameters of a
crystd dructure is a quantity verifying the rdation:

Nt » nVy/j V, [26]

where n is the number of parameters for a sngle atom (=3 if only atomic postions are considered),
V,, isthe volume of the primitive cell, V; is the average volume per aom which is always grester
than 10 A3, j is the multiplicity of the Laue dass, i.e j =2, 4, 8, 12, 16, 24 and 48 for triclinic,
monoclinic, orthorhombic, trigond, tetragona, hexagond and cubic systems, respectively. In a
diffraction experiment one has to get a number of independent observations (integrated intensities)
grester than N;. Let uscal “r’ the ratio between the number of reflections required to succeed in the
refinement, N,, and the number of free parameters. Thus we can write the relation:
Ny =1 N [27]

The value of “r” is, of course, not determined. However one can safely take a vaue of r=10,
even if much smdler retios can be satisfactory. From a conservative view one takes the equa signin
the relation [26]. These consderations determine a minimum vaue of the reciprocal distance, Qyip,s
that a high-resolution powder diffractometer has to reach in order to properly handle the refinement
of the crystal structure. The number of independent reflections inside a reciproca sphere of radius Q
veifiesthe following reaion:

N(Q) » Q3V/ (6p?}) [28]

The sgn < comes from the fact that the multiplicity of reflections in the “surface’ of the hki-
asymmetric domain ( hkO, for ingtance) is lower than the generd multiplicity j. Taking dso the equd
sgn of [28] and putting N(Q,,;;)=N,, one obtains:

Quin=(6p2Nnr/V,)3» (6p2 n)¥3» (24p2)V3» 6.19 AL [29]
where the approximations correspond to the values r=10, V= 10 A3 and, finally, n=4. The quoted

vaueis, perhaps, alittle bit high (r could be reduced to 5, Q,,,=4.91A-1) and correspond, indeed,
to the highest vaue reachable with the actud configuration of D1A.



Relation [29] puts a limit to the capability of a powder diffractometer for the refinement of a crysta
gructure. Diffractometer not reaching Q;, ae not useful for generd Structure refinements, only
smple particular cases can be treated.

The above consderations do not take into account the finite resolution of the diffractometer (in fact
the pesks have been considered as Dirac functions). Besides a Q-range given by (0,Q,,), the
reflections should be “well measured”. The resolution function of the diffractometer must be capable
of separating adjacent reflections in order to get the mgor fraction of the full st of independent
reflectionsin the available Q-range.

As can be deduced from the expression of Q, the resolution in reciproca space can be caculated
from the angular units (in radians) multiplying the raion [23] by 2p cosg/l and usng Q as
independent variable instead of 2. Let us call Dy, the full width at half maximum expressed in AL
Differenciating the equation [28] one can obtain the dengity of reflections per A-1:

dN(Q) =Q2 V/ (2p?]) dQ =r (Q) dQ=dQ/(Q) [30]
dN(2g)=(16p V,/]j | 3) 9n’q cosq d(2q) [30']

the differencid dN(Q) represents the number of reflections within a spherical layer of mean radius Q
and thickness dQ. The reciprocal of the dengity, r (Q), is the average separation between reflections,
D(Q), dong Q. The equation [30'] is given to show that the dengity of Bragg pesks, in angular units,
is proportiona to the reciproca of the Lorentz factor for powders. Thus, the reader can verify that
the maximum peak-overlap occurs at 20»109.5 Coming back to the reciprocd
gpace, we have to establish a criterium for considering that the reflections are “well separated” in the
whole Q-range. We can formulate the prescription as follows, the reflections can be discriminated if
the following relation holds

D(Q)=2p?/(Q?V,) » p Dg [31]

where p is afactor lower than unity. For instance, one can consider that two reflections can be well
measured if their positions are separated more than one hdf their Fwhm, i.e. p=0.5. If we represent
in the same graphics the values D(Q)/p, for different (j,V,), and D, is very easy to see what
structures can be sraightforwardly refined: those keeping D(Q)/p above Dy in the full Q-range. The
above values chosen for the “criteria’ parameters: r=10 and p=0.5, are very conservative and lower
vaues imply that more complex structures can be refined. In practice, each particular case should be
anaysed with care.

As an gpplication of the criteria discussed in the previous paragraph, we have represented in
Fig. 3 the experimenta resolution curves of D1A and the high resolution powder diffractometer 3T2,
a LLB, measured with TblG, Dy, accompanied with the average separation required for a “good



measurement” of adjacent reflections (D(Q)/p, with p=0.5) for orthorhombic crystal structures (j=8)
of primitive cell having volumes of 350, 500, 1000 and 1500 A3,
Resolution of D1A and 3T2
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Figure 3: Comparison D1A(at | =1.98R)-3T2

From the figure, it is worth mentioning that D1A & LLB is best suited for larger crysd
structures than 3T2, due to a better resolution in its whole Q-range. On the contrary, for cells smaller
that 300-400 A3, 3T2 can take advantage in refining the temperature factors, and providing more
precise dructurd parameters, due to the larger Q-range avalable as a result of the smaler
wavdength.

If there is no mode for the structurd problem the Rietveld method is not gpplicable. It is
possible to obtain integrated intengties (for asingle “phasg’) by refinement of the whole profile usng
I, in expression [14] asleast squares (LS) parameters, in order to try the ab initio resolution of the
crydd dructure. However, there is an intringc indetermination causing an infinite number of solutions
(the matrix of the norma LS-equations is usualy singular). When the reflections H, and H, are
accidentally at the same postion T, =T, the globd intensty I(H4, H,) can be decomposed, I, +
Iy, In an infinite number of ways. Usudly the equipartition, I,,= 1,5, is chosen. This uncertainty is
the fundamentd point limiting the capability of getting a structurd solution from powder deata
Another procedure to obtain integrated intengties is to iterate the calculated profile up to “match” the
observed pattern.

The expresson provided by Rietveld [32] (reference 7) to estimate the “observed” integrated
intensity, I;(* obs), in order to mimic the classica crystallographic R-factor (usualy called R-Bragg):



li(obs) = & l(cac) Wi (Yiobs- B (Yica- B) [32]

can be written in iterative form for cycde “k” as
=&, Wi { (ions B (Viea= B)) } 1! [33]

Whaever Rietveld program can be easlly modified to incude the possihility of “fitting” the whole
profile without structura mode using the expresson [33] for iterative cdculation of the integrated
intengties. Of course, the rest of profile parameters can be refined smultaneoudy with the usud LS
procedure. The method of “profile matching” is extremely efficient and fast and provides aligt of the
integrated intengity of dl the independent reflections within the measured angular range. Contrary to
sngle crysa data, many reflections have wrong intensity as they overlap. To solve acrysa structure
from such areflection list one has to try different ways to distribute a “single observation” (intengty
sum of a pesk cluster) between severd reflections, and then gpply the usua single crysta methods
(direct methods or Patterson synthes's, for instance). Due to the much better resolution, X-ray
synchrotron radiation is more suitable for getting a good set of integrated intendties for crystd
dructure determination from powder data. Neutron powder diffraction takes the advantage in the
refinement of the Structure,

Severd procedures have been proposed in order to distribute the intengity of a cluster between its
components. The most smple one is based in the technique of “squaring” an initia Patterson map
obtained from the equipartitioned data set: from the squared map new Fourier coefficients are
obtained alowing a new digtribuion for the overlgpping reflections. This cycle is repeated until the
datistica intengty digtribution of the overlapping reflections is smilar to that of the non-overlapping
ones.

The reader interested in this subject can conault the aticles given in reference 8 and the
references therein.

4. Refinement of Crystal Structures by Neutron Powder Diffraction.

In the study of crysta dructures, the best results can be obtained usng single crydals.
However, single crystds of suitable Sze are not dways available; moreover, in most cases (defective
materias) the actud nature of the compound makes the absence of such dngle crystds nearly
intringc. The RM described in section 2 is commonly used for the analyss of powder diffraction
patterns in order to refine crystal structures. The success of the RM in neutron diffraction was based
in the easy modelling of the peak shape (gaussan) and the parametrization of the FWHM (see
equation [23]). For many defective materids this gpproach is vaid and the RM can be used to refine
crystd structures getting, Smultaneoudy, information about the nature and concentration of defects.



An example of that is shown in the next paragraph. Later we shdl treat the case where anisotropic
broadening of Bragg reflections modifies substantially the smooth behaviour given by [23].

4.1. POWDER DIFFRACTION OF DEFECTIVE MATERIALSWITH WELL RESOLVED
BRAGG REFLECTIONS.

In the recent literature there is a great number of articles devoted to the structurd study of
defective materials by means of NPD. One of the most recent applications of the RM is the study of
High-T. superconductors, where the oxygen defects (vacancies or interdtitials) determine to a large
extent the actual T.. The advantage of neutrons with respect to X-rays comes in this case from the
higher relative scattering power of oxygen. The determination of the oxygen content, and the possble
ordering of the vacancies, is one of the chalenges for the researcher trying to understand the nature
of superconductivity in these novel materids. The reeder can find, for example in the journd Physica
C, ahuge number of articles on this subject.

Here, we want to show the particular example, which is aso relevant to the next section, of the
defect dructure of LayNiO4.q This is a semiconductor materid related to the High-T.
superconductors La,_Sr,CuO,, but the oxygen excess is greater. The work of Jorgensen et al.®
demongtrated the ussfulness of NPD and the RM in the dructural andlyss of defects. The authors
show that oxygen enters as interdtitial in the position (1/4 1/4 2»0.25) in the LaO layers, producing a
displacement of the nearest oxygen atoms (see figure 4).

Figure4: Structure of theinterstitial oxygen in LayNiOyy g (fromreferences 9 and 13).

4.2. THE USE OF THE EXTENDED RIETVELD METHOD TO DETERMINE THE
MICROSTRUCTURE OF A MATERIAL. EXAMPLES.



In the previous paragraph we have trested the Situations where the conventional RM can be applied,
that is, where the profile function WAT) isonly dightly affected by defects.

One of the most useful gpproximations is to congder that both, instrumenta and intringc profiles
can be well described by a Voigt function; i.e. a convolution of a gaussan and a lorentzian. The
pseudo-Voigt function as described in 10, is a good numerica gpproximation. This is equivaent to
assuming fixed sze and drain didributions. The most direct quantity that can be obtained eeslly isthe
volume averaged domain size, and the root mean square microstrain, in the direction perpendicular
to the (hkl) planes. These magnitudes are related to the integral breadth, by, of the reflections
through the relaions.

D>=1 /b g,¢C0] [34]

e = K B (graintang [35]

The constant k depends on the particular strain distribution assumed. Parameters describing
isotropic strains and size effects have been introduced in the RM11, through the scattering angle
dependence of equations [34-35]. However, strains and Size can give anisotropic broadening of
Bragg reflections, and some Rietveld refinement programs can handle these effects!2.

The generd treatment of anisotropic broadening in the RM, as is implemented in FullProf12 is
detalled in the Appendix. We shdl give two examples in which this anisotropic broadening is due to
grains, but the physica origin is different. The first one concerns the stoichiometric La,NiO413. The
compound is isomorphous to the parent La,CuO, of a family of High-Tc superconductors; it
crysdlizes a room temperature in the group Bmab. The dructure is a distortion of the tetragond
K5NiF4(14/mmm) structurd type. The crysds are micro-twinned in this Bmab phase with twin
boundaries pardle to <110> directions. On cooling there is a first order structura phase transtion,
changing the direction of the octahedrd tilt axis. The new average structure is tetragond (P4,/ncm).
However, as explained in reference 13, strong microstrains gppear at the trandtion as a consequence
of the micro-twinned parent structure. In small regions, the loca cell is orthorhombic with : &
=ar(1-e), b =ar(1+e) and ¢ =cy, where g is the locad microdrain. This gives rise to a
dependence of the broadening of Bragg reflections described by :

FWHM (29)s = { [40(2In2) T h*-K3i ] / [(WP+k?)+ (arZ cr9)1?] } tang [36]

The refinable microstrain parameter e = <e2>1/2 depends on the interaction between the pre-
exisent twin boundaries. It has been proved that the larger the concentration of twin boundaries, the
larger the value of the e parameter. In figure 5 the dramatic effect, on the observed versus calculated
profile, of the introduction of only one additiona parameter can be observed.
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Figure5: The neutron powder diffraction pattern of the low temperature phase of LayNiOy. Inthe
inset is shown, as a comparison with the observed profile, a portion of the calculated pattern
without the strain model discussed in the text.

The second example belongs dso to the same family of materids. Subdtituting S for La in
La,NiO,, it is possble to obtain a solid solution. If the samples are trested in areducing atmosphere,
oxygen vacancies are produced. The compound La; 5Srg 5NiO5 g (Immm) derives from the parent
K,NiF 4-type structure by partid ordering of vacancies in the NiO, planest4. The larger number of
vacancies is located in the dte of the oxygen O(1/200), in such a way that the fully reduced
compound should have a structure isomorphous to Sr,CuOs.

The incomplete reduction promotes fluctuations in the cell parameter a; the reflections of type
(Okl) are normd, while those with h* O are broadened. The expression for the broadening is:

FWHM (20)s = { [402In2) h? €] / [a%( h¥/a’+ K3+ 1%/c?] } tang [37]

In this case d <0, the improvement in thefit is conclusve, as can be seen in figure 6. The last two
examples show that it is necessary to have a model for the anisotropic peak broadening in order to
solve the average Structure.
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Figure6: Portions of the neutron powder diffraction pattern of the compound Laq 5SrggNiO3 g
showing the effect of the microstrain due to the partial ordering of the oxygen vacancies
(reference 14). The scheme on the left showstheideal NiO, basal plane. On theright, an
exaggerated view of the deformation of the NiO,_y plane is shown.

Appendix

EXPRESSION OF BROADENING DUE TO CELL PARAMETER FLUCTUATIONS.

It can be demondtrated that, except for a scaling term, the intringc profile function reproduces
the digribution function of the microdistortions (see Guinier pp 243-244). We shdl make the
hypothesis that the particular defects exigting in the sample produce correlated fluctuations of cell
parameters of gaussan character. Then, if X represent a “cell parameter” (direct or reciprocd) of



mean a and variance s2(a), the probability of finding the vaue “x” is given by the normd
didribution:

P(x)=1/Q2p)/s(a) exp{-L2[(x-a)/s(a)]?} [A1]

The fullwith a hdf maximum (H=FWHM) is related to the variance by the expreson
H=2Q(2In2)s (a). Let us caculate the variance of the squarel> of the scattering vector for the
reflection (hkl) as a function of the variances and co-variances of the cell parameters . The relevant
functionis

&= 1/ = M(x; hkl) [AZ]

where {x} (i=1,2,...6) are direct or reciproca cell parameters, or, in genera any set of Sx
parameters defining the metrics of the unit cel. The parameters {x;} are consdered as normaly
distributed random variables of mean vaues {a;}, with a covariance matrix of components § =
cov(x, %) [ cov(x, x) = s2(a;)]. The correlation matrix is defined from §j by G =corr(x, %) =
cov(x;, %)/[s (a;)s (a;)]. The mean value of M and its variance are given by:

th| = M(ai; hkl)

s2AMpg) =8 & S; (M/Ma)( TM/fa)) [A3]

Wherewe have put : TM/a; = (TM/X)x=a;. If another set of parameters p.= p (%) is used, the
relation betwen their repective covariance matrices is the following:

sAMp) =84 S; MMa; Ma;=aa S; & IM/Ap, Tp/Ta; & M/, Tp/Ta,
=48 (44 1p/a; S; Tpy/fa;) TMAP, TM/p,,
=aas,, ™MMp, TMMp,, [A4]
The peak shape produced by the norma distribution [A1] is gaussan, then the FWHM can be easily

cdculated from the variance. The Bragg law dlows to relate the variance of M with the FWHM of
the reflection due to strainsin the angular space:



H2, = (8In2)s 2(20)s = (8In2)s 2(My) My taréq [A5]

This gtrain contribution must be added to the instrumenta parameter U in the Caglioti expresson in
order to obtain the experimental FWHM:

H=U+ (8| n2)S 2(M hk|) /M hk tan2q +V tarq + W [A6]

The establishement of a “microstrain modd” explaining the experimental deta is equivdent to
find the vaues of the covariance matrix and relate these vaues to the particular defects exigting in the
sample. This corresponds to give a physcd interpretation of the results, task that could be not
obvious a dl. We shdl cdculae explicit forms of s2(M,)/M;,, for paticular cases without
description of the physical origin of the fluctuations.
Tetragonal lattice with correlated orthorhombic distortions.
This case correspond to one of the examples dicussed in the text. In this case we use the direct cdll
parameters:
<@ =<b> =ar, <> =7, s2(a) =s?(b) =s2, s2(c) =0 , cov(ab) =-s2 (corr(ab)=-1)
Using the formula[A3] and the microdtrain parameter e = s/a; one obtains:

S2(Mp) =4 (h? - k2)2s2 [a;6 = 4 (h? - k2)2e2 [a;4
The FWHM of the reflectionsis given by the expression [36] in the text.
General distortionsin an hexagonal lattice.
We shdl use, ingtead of the direct cdll parameters, the coefficients of the quadratic form
th| = A( h2 + k2+ hk) +C |2
Using the same notations as above, the variance of M is
Sa Cac h2+ k2+hk
S2(Mpy) =( h2+ k2+hk, 12)
Cac Sc 12
$2(Mpy) =San (h2+ k2+hk)2 +Scc 14+ 2CpgSaaScc(h?+ k2+hk)12

When using the fluctuations of the coefficients of the quadratic form M, one has to interpret
what happensin the red space, in terms of fluctuations of direct cell parameters. It is easy to obtain,



by applying the formula A2, the variance co-variance matrix corresponding to the direct cdll
parameters as a function the three parameters S5, Sc and Gyg, Which are the actud fitted
parameters. The fluctuations and correlation of the direct cell parameters are:

s(a) =3a%8 S, s(c) =c32S:; C.=Cxpc

The parameters that are directly fitted by the program are Sy 5 , Scc and Cpg.

The reader can verify that our formulation, except for an overdl isotropic term, is equivaent to that
of reference 16. The advantage of our formaism stems from a smpler interpretation of the refined
drain parameters. The overal isotropic strain is absorbed in the value of U in AG, it expresson
(when U isgiven in degrees?) is:

[s (M)M]ig, = p/180 QU -Ui)/(8IN2) = 174.53 YU, -Ui o)

General distortionsin an orthorhombic lattice.
We shdll use, ingtead of the direct cdll parameters, the coefficients of the quadratic form
th|:A h2 +B k2+C|2

The following notation isused s2(A) = S, TM/TA = k2, Cov(A,B) = Cyg, €c. The variance of M
is
Sa Cae  Cac h2
S2(Mpg) =(h?, k2,12) Cae S8 Cac k2
Cac Cec S 12

S2(Mpy) =Sa h#+Sg k4+S: 14+ 2[Cpag h2k2+Cpc h2124+Cg k212]
In general, the parameters § and G;; can be refined directly in the modified Rietveld Method. For

the othorhombic lattice described, as an example, in the text it is easy to see that the mode
correspondsto al § and Cjj equal to zero except for Sy .
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