

Structure solution in direct space using Fox and smart restraints

Vincent Favre-Nicolin

CEA, INAC, SP2M \& Université Joseph Fourier - Grenoble, France
http://vincefn.net/reciprocs/

Introduction: Structure Determination in Direct Space

Real (Direct)-Space Methods vs. Reciprocal-Space (Direct) Methods

Powder diffraction : Extraction of $\left|F_{\text {HКL }}\right|$ can go wrong:

Single Crystal:

- twinning/reflexion overlap
- no high resolution data available

Direct methods are powerful (using full crystallographic formalism to derive the electronic density in seconds) but may not recover from bad structure factors

Real-Space structure solution: try many configurations until a satisfactory one is found => brute-force approach enabled by the increase in computing power

A basic but robust approach to structure solution
Limited requirements on data resolution :
need more observed |Fhk|| than parameters (preferably many more) usually, a resolution of $2.5 \AA$ is enough for most small molecules/inorganic structures, less if rigid bodies are used

Solving Structures

Specifics of Fox

Parametrization

Data

Algorithms

Other uses

Availability

- inorganic or organic materials
- description using atoms, polyhedra, molecules
- automatic, smooth correction of special positions
- powder pattern (X-Ray, neutron, multi-phase, TOF, electron)
- single crystal
- joint optimization with several data sets
- use integrated prof les (no need to extract $\mathrm{F}(h k l)$)
- Parallel Tempering (Simulated Annealing)
- yields multiple solutions
- expandable to new algorithms
- display Fourier maps (from gsas/expgui or internally)
- simulation of powder \& single crystal diffraction
- display data (crystal, powder) from CIF f le
- free (http://objcryst.sourceforge.net)
- open source (GPL)
- available for Linux, MacOS X and windows

Examples of structures solved

Hydrides:

Inorganic:
$\mathrm{Na}_{2}\left[\mathrm{VO}\left(\mathrm{PO}_{4}\right)\right]_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$

http://objcryst.sourceforge.net/Fox/FoxBiblioStructures

Triglycerides

β^{\prime} PSP (1,3-di-n-hexadecanoyl-2-n-octadecanoyl glycerol) $\mathrm{C}_{53} \mathrm{H}_{102} \mathrm{O}_{6}$
up to 56 non-H free torsion angles!
FOX > 2 months

Metal-Peptide Framework

JACS (02/2008) DOI:10.1021/ja0762588

A. Mantion, L. Massüger, P. Rabu, C. Palivan,
L. B. McCusker \& A. Taubert

Figure 9. Crystal structure of MPF-9 generated by FOX and before Rietveld refinement, including hydrogen atoms.

37 independent atoms
~ 20 internal DOF, 1 flexible 9-atom ring

Figure 10. Crystal structure of MPF-9 after refinement of the model generated by FOX, including the water molecule.

Metal-Peptide Framework

JACS (02/2008) DOI:10.1021/ja0762588
A. Mantion, L. Massüger, P. Rabu, C. Palivan, L. B. McCusker \& A. Taubert

Figure 15. Packing diagram of MPF-9. Yellow balls indicate the voids.

Electron diffraction

$\mathrm{Pb}_{13} \mathrm{Mn}_{9} \mathrm{O}_{25}$ precession electron diffraction data P4/m, Z = 1
J. Hadermann et al., Ultramicroscopy 110 (2010) 881-890
a) Pb and Mn from direct methods (SIR2008)
b,c) O localized by FOX using:

- antibumps
- BVS cost function
c,d) Rietveld and DFT confirmed the correct model

e

Real-Space Exploration?

Basic Direct-space Algorithm (trial \& error):

A good program requires:
... this works but is only adequate for the very patient crystallographer!

Criteria to test the validity of the the model
An ergodic algorithm which:

- can explore every possible structural model
- will spend more time "close" to the real solution (efficient biasing)

A flexible modeling of the structure:

- allowing to reduce the number of parameters (Degrees of Freedom)
- able to describe any structure
- allow easy configuration changes

Criteria for Minimization

Criteria to Evaluate Trial Structural Models Diffraction Data

$$
\left.\left.R_{w p}=\sqrt{\frac{\sum_{\text {-factor }} w_{i}\left(I_{i}^{\text {obs }}-I_{i}^{\text {calc }}\right)^{2}}{\sum_{\text {or } \boldsymbol{c}^{2}} w_{i}\left(I_{i}^{\text {oss }}\right)^{2}}} \right\rvert\, \quad \begin{array}{l}
\text { Several datasets can } \\
\text { combined: } \\
\text { X-rays \& neutrons }
\end{array}\right\} \begin{gathered}
\text { several wavelengths, } \\
\text { Several temperatures } \ldots
\end{gathered}
$$

Why not use extracted structure factors (faster \& equivalent)?

- This would require a perfect description of the profiles and background, which can be difficult ("real" samples, with ill profiles and multiple phases, background difficult to "guess" for close-packed reflections).
- Direct-space algorithms are necessary for samples where the extraction of structure factors is difficult
- with "integrated profiles", the full pattern is not calculated and the speed is equivalent to extracted structure factors profiles

Criteria to Evaluate Trial Structural Models AntiBump Restraint

An AntiBump function allows the repulsion of atoms while permitting the "merging" of identical atoms on special positions or connecting several polyhedra

> Energy calculations?
> Either internal energy for molecules or global for the entire unit cell
> ... But energy calculations are extremely costly from a computation point of view

Criteria to Evaluate Trial Structural Models Bond Valence

The valence of each atom depends on its neighbours and their distance :

Warning: bond valence / AntiBump calculations use a lot of computing power (as much or more than structure factor computation)
=> only use them if the diffraction data is not of sufficient quality to solve the structure

$$
V_{i}=\sum_{\text {neighbours } j} e^{\frac{\left(R_{1}-r_{i j}\right)}{0.37}}
$$

Criteria to Evaluate Trial Structural Models Combining Several Criteria

Problem: different criteria will have different scales !!

When combining experimental data, χ^{2} can be summed:

$$
\chi^{2}=\sum_{\text {data } 1} \frac{1}{\sigma_{i}^{2}}\left(I_{i}^{\text {obs }}-I_{i}^{\text {calc }}\right)^{2}+\sum_{\text {data } 2} \frac{1}{\sigma_{i}^{2}}\left(I_{i}^{\text {obs }}-I_{i}^{\text {calc }}\right)^{2}+\ldots
$$

=> avoid using R -factors which cannot be summed Fringe benefit: using χ^{2} makes you ready for maximum likelihood (ML)

Sometimes combining «incompatible» criteria (χ^{2}, energy, antibump) is necessary => finding the correct scale can be difficult.
=> correct scale factors can be guess if you know the 'target' values :
e.g. χ^{2} should converge towards Nobs (Goodness-Of-Fit=1), antibump towards 0, etc..

Sometimes scaling different data sets is necessary (e.g. combine powder diffraction data from synchrotron and neutron) : statistically, no scale should be applied, but for « global optimisation » algorithms rules may be bent (see later ML slides)

Model Building: Real Space Parametrization

Structural Description from Building Blocks: the Z-matrix approach

The number of trials required varies exponentially with the number of parameters
=> need to use all the a priori information about the atomic coordination

Building blocks for the crystal structure
atom

Structural Description from Building Blocks: the Z-matrix approach

The number of trials required varies exponentially with the number of parameters
=> need to use all the a priori information about the atomic coordination

atom | Building blocks for |
| :---: |
| the crystal |
| structure |

Dynamical Occupancy Correction

Inorganic structures often have atoms in special positions, and have atoms common to several polyhedra. => New algorithm which must:

- correctly describe atoms in special positions without a priori knowledge
- allow the atoms to move continuously to and from the special positions
- not depend on the type of compound or the modelling chosen (atoms, polyhedra, molecules)

! Warning ! Do not use the DOC if no special positions or shared atoms are expected, as it slows down the computation.

Pitfalls of internal coordinates (zmatrix)

a torsion angle (moving many atoms) has a much narrower minimum than a translation parameter of an individual atom
=> even if the number of degrees of freedom diminishes, the global minimum is much narrower

Atoms are deduced from previous atoms => the first atoms in the z-matrix must also be the first to be found
=> The convergence can depend on the order of the atoms in the z-matrix

> The z-matrix approach reduces the parameter space to explore, but makes it (much) more difficult to find the solution
idea: keep all the coordination information, but with a flexible approach

All atom positions are directly defined by their xyz coordinates and the coordination information is introduced by restraints on:

- bond lengths $\chi^{2}=\frac{\left(d-d_{0}\right)^{2}}{\sigma_{d}^{2}}$
- bond angles
- dihedral angles

$$
\chi^{2}=\frac{\left(\alpha-\alpha_{0}\right)^{2}}{\sigma_{\alpha}^{2}}
$$

The orientation of the molecule is defined by a quaternion (to avoid "gimbal lock" angles)

Flexible Approach using Restraints

- this modelization is independent from the order of the atoms
- any type of restraint can be introduced
- any type of movement can be directly done (no need to compute complex torsions)
- any cycle can be defined

Making the Smart Moves

With atoms defined independently, it is vital to have intelligent moves that do not break the restraints

All torsion \& flip moves that do not break restraints are automatically

Adaptative Conformation Changes

Random torsion angle
changes :
- rotate the smallest fragment
- tune the max. rotation so that
the average displacement is
$0.1 A$.
- same for bond angle changes
- tune global rotation of molecule

" Twist " mode:
alter an internal part of a chain/cycle
=> long chains, flexible cycles
TODO: determine " soft modes" of the molecule and use them to distort the molecule (computationnally costly)

Cimetidine

A well-known testcase for ab initio structure determination from powder diffraction

17 non-H atoms (8+6=14 DOF)
Cernik et al. J. Appl. Cryst 24 (1991), 222

Reverse Monte-Carlo

Reverse Monte-Carlo

Parallel Tempering \& Annealing Temperatures

simultaneous optimization at different temperatures

trial \#
Hypersurface

Using several parallel optimizations at different temperatures ensures that the algorithm can get out of any local minimum.
Furthermore, it does not require to predict an adequate decrease rate for the temperature.

Maximum Likelihood \& Global Optimization

Maximum Likelihood

WARNING:

 Approximations! (Theorists hold your fire!)$$
\begin{aligned}
& \text { In a "classical approach" : } \\
& \sigma^{2}=y_{\text {obs }}^{i}
\end{aligned} \chi^{2}=\sum \frac{\left(y_{\text {obs }}-y_{\text {calc }}\right)^{2}}{\sigma_{i}^{2}} .
$$

assumes that the model can fit perfectly the observed data.
But there can be errors in the model!
typically positionnal errors during the search for a structure solution
with a positionnal error measured by: $D(\vec{k})=\langle\cos (2 \pi \vec{k} . \Delta \vec{r})\rangle$
introduce a variance on the calculated structure factor

$$
\sigma_{\text {calc }}^{2}=\left(1-D^{2}\right) \sum_{\text {atoms }} f_{j}^{2}
$$

Use the "most likely" calculated structure factor

$$
\left\langle F_{\text {calc }}\right\rangle=D F_{\text {calc }}
$$

$$
\sigma_{i}^{2}=\sigma_{c a l c}^{2}+\sigma_{o b s}^{2} \quad \chi^{2}=\sum \frac{\left(y_{o b s}^{i}-\left\langle y_{c a l c}^{i}\right\rangle\right)^{2}}{\sigma_{i}^{2}}
$$

Application to Global Optimization

$1^{\text {st }}$ application:
 incomplete model

missing atoms (H's, solvant) do not contribute to the Structure Factor but increase the variance

$$
\begin{gathered}
D(\vec{k})=\langle\cos (2 \pi \vec{k} \cdot \Delta \vec{r})\rangle=0 \\
\left\langle F_{\text {calc }}\right\rangle=D F_{\text {calc }}=0 \\
\sigma_{\text {calc }}^{2}=\left(1-D^{2}\right) \sum_{\text {atoms }} f_{j}^{2} \\
\text { Markvardsen,Acta Cryst } \\
\text { A58(2002) }
\end{gathered}
$$

$2^{\text {nd }}$ application:
model errors

Atoms are always misplaced during a global optimisation
taking into account random positionnal errors should yield a better agreement between the incorrect model and the observed diffraction data
can it help its convergence ?

Hypersurface as a function of positionnal error

Hypersurface: $\chi^{2}=f$ (parameters)

taking into account random positionnal errors:

- increases the width of the global minimum (for small errors)
- flattens the hypersurface for large errors

Rules to find a structure solution: check multiple solutions

Look at multiple solutions => estimate confidence in
" solution"

1) Compare the χ^{2} and Rwp
2) Use Fourier Difference Maps to check differences (requires at least 1.5A resolution data)
Use the same contours for all solutions
Fo-Fc, +1 and -1 contours

Correct

Wrong conformation of internal chain

Wrong position for side CH_{3} group

Interatomic distances

Check distances, overlap between atoms

 3.4555 .1601 .5711 .4362 .3223 .4693 .5303 .7893 .0741 .8293 .1752 .3892 .4824 .1493 .7113 .1822 .755
 $2.3001 .4362 .4754 .8931 .4712 .4722 .9592 .7813 .6873 .1652 .8733 .6122 .31841732 \ldots 20$ — 2505

 1.2193 .7893 .0442 .7813 .0032 .4281 .4574 .9551 .0672 .3794 .2603 .6063 .5753 .5004 .0133 .3474 .111

 2.8892 .3893 .4473 .6123 .8273 .7543 .6833 .6063 .8443 .3441 .6073 .0772 .293 .2092 .2102 .4202 .177 3.6272 .2823 .9032 .3182 .9283 .9162 .9453 .5754 .0093 .3361 .3812 .2394 .5342 .3452 .8021 .8001 .963

 3.1612 .7553 .7022 .3052 .7873 .8083 .0154 .1114 .0223 .7791 .3302 .1771 .9632 .2951 .5222 .454 .871

Polymer Electrolyte β-PEO \mathbf{O}_{6} :LiAsF ${ }_{6}$

E.Staunton, Yu. Andreev, P. Bruce JACS 127 (2005), 12176

Top problems for ab initio structure determination:

(assuming data and unit cell correctly

\#1 Model is wrong:

- wrong formula
- incorrect restraints
- wrong spacegroup
- missing solvant
\#2 Preferred Orientation
\#3 Not enough data
\#4 Need a faster computer?

Solution:

1- check real composition (mass spectroscopy, EDX microscope)
2- Add new atoms/polyhedra if they are missing
(The frst structure solved with Fox, CsOH. $\mathrm{H}_{2} \mathrm{O}$...was supposed to be a Cs hydride !)

Solution:

1- Collect new data
9- Collect new data
10- Search for preferred orientation parameters ab initio Phys. Rev. B 76 (2007), 092104

Solution:
Add more restraints: antibump, bond length Use other methods to gather restraints (NMR)

Check with litterature if more trials are really required or email the author for advice!

Rules to find a structure solution: be a flexible User

Restraints must be used to reduce parameter space
... but too many restraints can slow or prevent a structure solution
e.g.: a combination of strong antibump and angular restraints can make very difficult to go from one local minimum to the global one.

Imagine the "molecule" to be solved is: a man \& a chair.
The "solution" is:
the man, sitting on the chair, in the Prado Museum (Madrid)
The random starting location is: Grenoble railway station.
To " speed up " the solution, you impose as much restraints as you can, i.e. " the man must be sitted on the chair at all times "
=> Rigid groups should be used scarcely... and do not generally speed up the convergence
=> if the algorithm " distorts "your molecule during the optimization, it's for your own good (honest !)
=> the correct conformation comes from the data, not the number of restraints => NB: different rules apply if data is of $\underline{\text { bad quality }}$

Rules to find a structure solution: no high-resolution data

" Solving the structure " means finding all the atomic positions with an error of ~ $0.1 \AA$.
=> high resolution data ($1 \AA$ and higher) is not needed... increasing the resolution by 25% doubles the computing time !

Giving high-resolution data is like giving your address to a friendby insisting on the exact pattern of colours from your garden's flowers ... instead of just giving the address \& colour of the house

Most of the time, a $2.5 \AA$ resolution is enough.
...sometimes 1.5 \AA.
Of course you still need the high-resolution data for the least squares refinement!

Comparing crystal structures

Sometimes the score (Chi^2, Rwp) is not enough to decide which solution is correct
=> to browse among solutions a tool has been developed (Jan Rohlíček, Michal Hušák, ICT Prague):
http://crystalcmp.sf.net

=> allows to superpose several structures
=> also compares a 'fingerprint' of all molecules

Fox: recent features

Auto-indexing

- Search for peaks

Auto-indexing

- Search for peaks

Auto-indexing

Quick Advanced
Find cell!
Weak Diffraction (scan larger volume)
\square Try Centered Lattices

Fox cell Explorer (EXPERIMENTAL)
Choose crystal to apply selected cell to: Choose crystal to apply select

$$
\square \text { Automatic Profile Fitting (Le Bail) }
$$

Score=	130.4 $\mathrm{V}=1281.0(1.0 \mathrm{~V})$	6. 82718.82010 .394	90.00106 .43	90.00	MONOCLINIC P
Score=	$130.2 \mathrm{~V}=1281.0(1.0 \mathrm{~V})$	10. 70018.82010 .394	90.00142 .27	90.00	MONOCLINIC P
Score=	$130.2 \mathrm{~V}=1281.0(1.0 \mathrm{~V})$	10.39418 .82010 .700	90.00142 .27	90.00	MONOCLINIC P
Score=	$130.1 \mathrm{~V}=1281.0(1.0 \mathrm{~V})$	6.82718 .82010 .700	90.00111 .30	90.00	MONOCLINIC P
Score=	$98.6 \mathrm{~V}=2561.2(2.0 \mathrm{~V})$	13.65218 .81814 .633	90.00137 .05	90.00	MONOCLINIC P
Score=	$98.6 \mathrm{~V}=2561.2(2.0 \mathrm{~V})$	10.39418 .81813 .652	90.00106 .43	90.00	MONOCLINIC P
Score=	$98.6 \mathrm{~V}=2561.2(2.0 \mathrm{~V})$	10.39418 .81814 .633	90.00116 .51	90.00	MONOCLINIC P

- Auto-indexing using the dichotomy algorithm
- Default search up to monoclinic
- Default search with 0-3 impurity lines
- Search for triclinic (advanced tab,working since version 1.9)
- Automatic volume range selection
- Ability to select solution \& perform profile fit

Profile fitting \& Le Bail extraction

- Fox is not too sensitive to exact profiles but it is still better to use fitted ones (for large overlaps)
- By default Fox refines parameters with increasing complexity (width -> symmetric profile -> asymmetric -> background -> cell...)
- Note: use a higher max[sin(theta)/lambda] to get higher resolution Fourier maps

Profile fitting \& Le Bail extraction

- It is also possible to select individual parameters for a manual fit
-NB: enable tooltips and read them !

Profile fitting: spacegroup explorer

- Performs a profile fitting for all spacegroup settings allowed by the unit cell (37 for monoclinic cells, 478 for cubic cells... it can take a while).
- Spacegroups are listed by increasing GoF up to to 2*min(GoF)

Fullprof export

- 1 !Number of refined parameters
-! Zero Code Sycos Code Sysin Code Lambda Code More -> Patt \#1

File objects Preferences Help

Max Sin(theta)/lambda: 0.2500
Chi^2 35321.86
GoF 20.806
Powder Pattern Components
PowderPatternBackground
Object
Interpolation Model Spline $\hat{\boldsymbol{v}}$

- 0.00415153 0.0 0.00119514 0.0 0.00105758 0.0 0.000 0.0 0
-! -
-! Data for PHASE number: $0==>$ Current R_Bragg for Pattern\# 1: 0.00
\cdot
--
-Cimetidine
-!Nat Dis Ang Jbt Isy Str Furth ATZ Nvk More
$\begin{array}{llllllllll}\bullet 17 & 17 & 20 & 0 & 0 & 0 & 0 & 1.0 & 0 & 1\end{array}$
-!Jvi Jdi Hel Sol Mom Ter N_Domains
- $0 \quad 3 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
-! Contributions (0/1) of this phase to the patterns
- 1
-!Irf Npr Jtyp Nsp_Ref Ph_Shift for Pattern\#0
$\begin{array}{ccccc}\bullet & 0 & 0 & 0 & 0 \\ \bullet! & P r 1 & \text { Pr2 } & \text { Pr3 } & \text { Brind. Rmı } \\ \text { • } & 0 & \text { Files }\end{array}$ \square
- $1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 0$
-! Max_dst(dist) (angles) Bond-Va.
- 2.7000 1.5000

0

This will create the files: /home/vincent/test.pcr /home/vincent/test.dat
-P 1 21/a 1
-!Atom Typ X Y Z Biso Occ In Fin N
-C1 C 0.566876 0.342198 0.343369 3

$\bullet N 2 N 0.4486640 .3719330 .388352310000$

- 00000
\bullet - C3 $\quad 0.4542530 .4059030 .5507293100000$
0000
$\bullet N 4 N 0.5860070 .4071230 .696493310000$
00000
Generating Full HKL list...Done (kept 924 ref

-N6 N 0.663486 0.486503 1.01791 31000000
- 00000
-N7 N 0.367983 0.448348 0.627608 3100000
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$

Fullprof export

Least squares

Least squares refinement can be performed:

- For profile fitting
- After optimization (only the structure is refined, no parameter choice)
- Automatically during global optimization

Least squares

Least squares refinement can be performed:

- For profile fitting
- After optimization (only the structure is refined, no parameter choice)
- Automatically during optimization

Least squares

Least squares refinement can be performed:

- For profile fitting
- After optimization (only the structure is refined, no parameter choice)
- Automatically during optimization

[^0]J. Appl. Cryst 43 (2010),401 : suggests global optimization can be performed by doing only downhill minimization from random starting points...

Model Building: Molecular Dynamics for Flexible Cycles

Using Molecular Dynamics

Atoms in "restrained" groups are moved using molecular dynamics principles :

- Each atom is given a random vector speed
- The overall Energy is $E_{\text {kinetic }}+E$
restraints
- Atoms are moved according to standard mechanics (force=gradient of $E_{\text {restraints }}$)

Using Molecular Dynamics

MD moves are computationally expensive => they are only tried once in a while
=> the frequency can be chosen (by default: $0=$ never)
=> the relative energy of the molecule can be chosen to avoid too much distortion
... But remember that SOME DISTORTION IS NECESSARY to reach the 'true' conformation of the Molecule, starting from an incorrect one...

Using Molecular Dynamics + least squares

MD moves allow to solve complex, flexible structures with large cycles... ...but it can take a long time!

Using periodic least squares greatly helps the convergence, as the least squares algorithm moves all the atoms individually (taking into account restraints) and is not limited by simple moves, or a z-matrix description

Molecular Dynamics + least squares + rigid bodies

SOME DISTORTION IS NECESSARY... but sometimes you really want to avoid it => You can create 'rigid groups' of atoms that will only be translated/rotated as a rigid body, even during least squares.

Using Fox

From the wiki: http://objcryst.sf.net
Fox Home Page (wiki)
SourceForge Project
About FOX

Download
Install
Screenshots
Biblio: Fox References
Biblio: Structures solved
Mailing List
FAQ
Using FOX
Tutorials
FOX Manual (intro.)

- Crystal Structures
- Powder Diffr. data
- Single Crystal data
- Optimization Algo.

FOX Development
Current Development
Features Requests
ObjCryst++ API
Getting FOX from SVN
Browse Code Repository

command-line usage:
Fox example/pbso4-joint.xml --nogui --randomize -n 100000 --nbrun 10 --finalcost 1000 -o test.xml

Outlook \& Acknowledgements

After 10 years... Fox can now index, fit profiles, ... and still solve structures !

Projects:

- Update tutorials
- (much faster) least squares refinements
- Efficient protein flexibility
- More tests for Fox. Grid
- Inter-atomic restraints (complicated) ?
- FoxFlip (charge flipping) ??
- Contribute to pyobjcryst

Thanks to:

- Radovan Cerny (U. Geneva)
- Jan Rohlíček, Michal Hušák (ICT Prague)

- Mark Pitt (TOF), Anders Markvardsen (help with Max Likelihood)
- Brian Toby + Michael Polyakov (Fourier maps display)
- Lachlan Cranswick... for too many reasons to list...

Improvements depend on user feedback !!! Send feedback, feature requests !
open-source project => add your contribution
=> help by testing "development" versions (subscribe to the mailing list!)
=> send bug reports (also for cif import in openbabel)
Get FOX from http://objcryst.sourceforge.net

[^0]: Generating Full HKL list...Done (kept 924 reflections)

