

Laboratoire de Chimie de Coordination CNRS, UPR 8241

CIF Crystallographic Information File

Jean-Claude Daran
Directeur de recherche émérite CNRS

CIF Crystallographic Information File

- archiver les données cristallographiques
- transmettre ces données entre différents laboratoires
- transférer ces données d'un programme à un autre
- utiliser comme matériel supplémentaire
- soumission électronique à une revue scientifique
- transférer les résultats dans une base de données

Un fichier CIF est toujours en ASCII. Seul les caractères suivants sont permis

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789 !@#\$%^&*()_+"~<>?|\-=[];"`,/.

Tous les autres caractères tels que

- ♦ Å, °, é, Ø
- ♦ indices et exposants
- ♦ Lettres grecques
 ♦ ±, ≥ or ∞

nécessitent l'utilisation d'un code spécial

Ex. \%A pour \mathring{A} ; \p pour π

Les unités sont implicites:

```
• Å pour _cell_length_a
```

• min pour __diffrn_standards_interval_time

```
Il faut donc utiliser _cell_volume 2367.5(8)
```

et <u>non</u>

_cell_volume 2367.5(8)\%A^3^

L'utilisation d'un éditeur de texte ou d'un éditeur spécial CIF est fortement recommandé

Toutefois un traitement de texte (Word) peut-être utilisé, mais le fichier créé en sortie doit être:

- au format ASCII
- ne pas contenir de codes invisibles ou cachés
- pas de ligne supérieure à 80 caractères

Data name une ligne de caractères débutant par un underscore (_)

Data item une ligne de texte ne débutant pas par (_) mais qui est

précédé par un data name.

Text string une série de caractères délimités par des espaces,

des quotes, ou des points virgules comme premier

caractère de la ligne.

_exptl_crystal_density_method 'not measured'

_computing_molecular_graphics

'ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997)

```
Data loop
                une liste de data names, précédé par _loop et suivie
                par une liste répétitive de data items
loop
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
```

Data block

un ensemble de data names et de data items (qui peuvent être arrangés en boucle) précédé par une instruction data_code et terminé par une autre instruction data_ ou par la fin du fichier.

```
data_Global
_publ_contact_author_name
_publ_contact_author_address
;
Laboratoire de Chimie de Coordination,
205, route de Narbonne
31077 Toulouse Cedex 04, France
```

Data_compound1

- - - - - - - - - - - - - -

Data file

un ensemble de data blocks: aucun data blocks ne doit avoir le même nom.

data_global

Data_compound1

Data_compound2

.

Data names et data blocks

- définitions jusqu'à 76 caractères
- assemblage hiérarchisé

```
_<category>_<topic>_<subtopic
```

• différentes possibilités de catégories comme

```
_publ_ _exptl_ _geom_ _refln_
```

• aisément compréhensible

data blocks:

- (a) data_global
 - modèle
 - information concernant l'auteur à contacter
 - information sur la soumission
 - liste des auteurs (nom, affiliation, adresse)
 - titre résumé commentaires
 - liste des références
 - Légendes des figures et des tableaux
 - remerciements
 - etc
- (b) un data block pour chaque structure (e.g., data_compound1, data_compound2,...)

Quelques propriétés du format CIF

- (a) I 'ordre des couples data name/data item et l 'ordre des data blocks n 'a pas d 'importance.
- (b) A chaque data name doit être associé un data item, ce dernier peut ne contenir aucune donnée réelle mais doit avoir un symbole tel que "? " ou ". ", par exemple __chemical_name_common ?

Dans la boucle ci-dessous, le quatrième data name s'applique seulement dans la seconde ligne.

```
Loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
geom bond distance
geom bond site symmetry 2
geom bond publ flag
Ni
     N1 \quad 2.036(2) \quad Yes
Νi
     N1 2.054(2) 2 555 Yes
      S2 2.421(10) . Yes
Ni
C
      S2 1.637(3) . Yes
N1
      C1
          1.327(3) . ?
```

Attention, dans certains cas, certaines données sont obligatoires: e.g., pour Acta Cryst. C par exemple

(c) Les codes standards doivent être utilisés autant que possible e.g., traitement des atomes H durant I 'affinement

```
_refine_ls_hydrogen_treatment refall

ou
_refine_ls_hydrogen_treatment constr

Sinon, il faut fournir une explication la plus complète possible.
```

(d) possibilité de préparer des tableaux standard, par exemple présentation des paramétres de liaisons H
_geom_hbond_<subtopic>

non-standard : il faut alors définir des données supplémentaires e.g., comparaison de paramètres géométriques:

```
loop_
_publ_manuscript_incl_extra_item
'_geom_extra_tableA_col_1'
'_geom_extra_tableA_col_2'
'_geom_extra_tableA_col_3'
'_geom_extra_tableA_col_4'
'_geom_extra_tableA_col_5'
'_geom_extra_tableA_col_6' # jusqu 'à 14 colonnes
'_geom_extra_table_head_A' # pour en tête de tableau
'_geom_table_headnote_A' # si nécessaire
'_geom_table_footnote_A' # si nécessaire
```

```
geom extra table head A # entête du tableau
Table 3.
Comparison of molecular geometry parameters (\%A,\%) for
1.3-dioxolan-2-ones
loop
geom extra tableA col 1
geom extra tableA col 2
geom extra tableA col 3
geom extra tableA col 4
geom extra tableA col 5
geom extra tableA col 6
Parameter^a^ (I) (II)
                          (III)
                                      (IV)
                                                (V)
01---C2
           1.33 1.327(2) 1.316(6) 1.34(2) 1.323(5)
"C2\\db O2" 1.15 1.207(2) 1.192(6) 1.21(2) 1.200(6)
C2---03 1.33 1.341(2) 1.316(6) 1.28(2) 1.348(6)
O3---C4 1.40 1.447(2) 1.443(5) 1.42(2) 1.460(6)
C4---C5 1.52 1.531(2) 1.498(7) 1.53(2) 1.527(6)
01---C5 1.40 1.448(2) 1.420(6) 1.46(2) 1.456(5)
01 - - C2 - - 03 111 112.7(1) 111.9(4) 113(1) 112.0(4)
geom table footnote A # légende du pied de page
;
     1,3-dioxolan-2-one (Brown, 1954)
(II) D-erythronic acid 3,4-carbonate (Moen, 1982)
(III) 4-p-chlorophenyloxymethyl-1,3-dioxolan-2-one (Katzhendler et al.,1989)
(IV) 4-(5-(2-iodo-1-hydroxyethyl)-5-methyl-tetrahydro-2-furyl)-4-methyl-1,
3-dioxolan-2-one (Wuts, D'Costa & Butler, 1984)
     1,6-bis(1,3-dioxolan-2-one)-2,5-dithiahexane (this work)
^a^ Numbering schemes have been standardised as for (V)
```

Quelques astuces pratiques

- 1. ligne de caractères 3 façons de les utiliser Une manipulation incorrecte conduit au chaos!!
- (a) délimitée par des espaces
 - pas d'espace dans la donnée (data item)
 - ne peut pas excéder une ligne
 - exemples:

- (b) délimité par des apostrophes
 - la donnée peut maintenant contenir des espaces
 - elle reste limitée à une ligne
 - mais cette ligne peut apparaître sur la ligne suivante

```
_exptl_crystal_density_method 'not measured' chemical_formula_moiety 'C12 H24 S6 Cu 2+, 2(P F6 -)' _publ_section_acknowledgements 'We thank EPSRC for a postdoctoral award (to J.O'G.).'
```

(a) délimité par des points virgules pour les textes qui excèdent une Igne par exemple:

```
_publ_section_abstract;

In the title compound C~12~H~22~O~7~, (1), molecules occur exclusively as the cis geometric isomer and are linked by hydrogen bonding to form infinite helices running parallel to the crystallographic c direction.
```

2. Text

(a) Pour une publication (Acta Cryst.)

```
_publ_section_abstract
_publ_section_comment
_publ_section_references
```

- la plupart du temps, il s'agit de texte normal
- indices : un jeu de tildes ~~
- exposants: un jeu de signe d'omission ^^

e.g., pour $[Cu(H_2O)_4]^{2+}$ il faut écrire $[Cu(H\sim2\sim0)\sim4\sim]^2+$

- à éviter dans _chemical_formula_moiety, etc
- pour Å utiliser \%A pour ° utilser \%
- pour les autres codes voir la référence 4

http://journals.iucr.org/c/services/authorservices.html

- (b) Erreurs communes, triviales mais ou ennuyeuses
 - Le logiciel fais ce que vous lui dites, mais pas ce que vous voulez
 - defaut d'accord entre les codes indices et exposants
 - défaut dans la fin d'une ligne ou d'un texte
 - défaut dans l'utilisation correcte des points virgules
 - Le logiciel de vérification fais ce qu'il peut, mais on peut avoir des erreurs ou des effets pervers pour des raisons mineures
- (c) Selection de données géométriques

```
_geom_type_publ_flag
(type est bond, angle Ou torsion)
```

- »» Yes (or y) indique que la valeur est sélectionnée
- »» en dehors de Y ou Yes, (No, n, ?) indique que la valeur n'est pas sélectionnée

Toujours être prudent en éditant un CIF - utiliser un editeur spécial comme enCIFer reduira les risques d'erreurs. Une erreur fréquente est le retrait d'un point (.) ou d'un espace: ce qui changera le nombre de paramètres sur une ligne, conduisant a une confusion entre les data names et les data items.

Erreurs fréquentes

Les erreurs de syntaxes les plus fréquentes lors des soumission de fichiers CIF à Acta Crystallographica, Section C ou E sont:

```
_publ_author_footnote
```

Ce data name est stipulée dans la boucle mais aucune donnée n'est fournie. (Si le nombre d'auteurs est un multiple de 3, checkCIF ne détecte pas cette erreur).

_publ_author_address oubli du point virgule (;) avant ou après l'adresse

Tableau de liaisons hydrogène pas d'underscore' (_)dans le code de symétrie (2555 au lieu de 2_555)

Si aucune sortie ne peut-être obtenue avec printCIF (voir ci-dessous) c'est souvent parce que persiste des erreurs de syntaxe dans le CIF. En particulier, vérifier que les symbols ~ et ^ pour les indices et les exposants vont bien par paires.

Vérification du CIF

envoyer le fichier CIF par e-mail à: checkcif@iucr.org ou utiliser le site web à l'adresse suivante: http://journals.iucr.org/services/cif/checking/checkform.html pour différent tests:

- validation des data names
- vérifier les erreurs de syntaxe
- vérifier la consistence des données cristallographiques
- vérifier le groupe d'espace (les symétries oubliées!)
- détecter les valeurs anormales des facteurs de température
- détecter des incompatibilités entre coordonnées et géométrie
- détecter des oublis (données indispensables pour Acta Cryst.)
- et bien d'autres choses

Certains logiciels incluent ces vérifications, soit par lien direct avec le site IUCR, soit parce que les programmes de vérifications sont inclus directement dans le logiciel.

Impression du fichier CIF

On peut aussi obtenir une impression au format d'une publication du fichier CIF (Acta Cryst.)

envoyer le fichier par e-mail à:

printcif@iucr.org

ou utiliser le web à l'adresse suivante:

http://journals.iucr.org/services/cif/checking/ printform.html

Dans ce dernier, on peut obtenir un 'preprint' au format postscript ou PDF. Il faut bien sur vérifier qu'il ne contient pas d'erreurs.

Références

- S.R. Hall, F.H. Allen & I.D. Brown,
 Acta Cryst. 1991, A47, 655–685.
 Des copies sont disponibles auprés de International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
- 2. S.R. Hall, *J. Chem. Inf. Comput. Sci.*, 1991, 31, 326–333.
- 3. *Acta Cryst.* 2002, C58, e2–e8.
- 4. A Guide to CIF for Authors. Des copies sont disponibles auprés de International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Alexander J. Blake, Co-Editor Acta Crystallographica School of Chemistry, The University of Nottingham University Park, Nottingham NG7 2RD, UK

Tel: (INT+) 44 115 951 3488 Fax: (INT+) 44 115 951 3563

http://www.iucr.org/iucr-top/cif/software/

enCIFer

Editeur graphique permettant:

- Localisation et indications des erreurs en utiliant le dictionnaire
- Correction des erreurs de syntaxe
- Edition de données individuelles ou en boucles.
- Addition de nouvelles données individuelles ou en boucle
- Addition d'information standard gràce à des aides (wizard)
- Aide à la publication- information bibliographique demandée par la plupart des journaux
- 3D visualisation de la structure (Mercury)

Mercury

Visualisation de la molécule et calcul de géométrie à partir d'un fichier CIF mais aussi de a partir de différents formats.

PublCIF

A partir d'un fichier, prépare un fichier formaté (Preprint) dans le style Acta Crystallographica Sections C et E.

Le CIF et le fichier formaté (Preprint) sont présentés côte à côte et sont édités ensemble. Les corrections de l'un sont appliquées à l'autre.

Références logiciels

- CIF: http://www.iucr.org/resources/cif/software/cif
- PublCIF: http://www.iucr.org/resources/cif/software/publcif
- Mercury : http://www.ccdc.cam.ac.uk/products/mercury/
- PrintCIF: http://publcif.iucr.org/services/tools/printcif.php
- CheckCIF: http://checkcif.iucr.org/
- PLATON : http://www.cryst.chem.uu.nl/platon/
- CIFTab : http://shelx.uni-ac.gwdg.de/SHELX/