RECIPROCS : 6-7 Juillet 2009

Programme JOUR 2 :

 8h00 - 8h15
 SOLEIL

 8h20 - 8h35
 ESRF

 8h40 - 8h55
 Neutrons

NEUTRONS

Pourquoi utiliser des neutrons plutôt que en complément des Rayons X ?

F. Porcher, Laboratoire Léon Brillouin, CEA/Saclay

SOURCES DE NEUTRONS : L'OFFRE

+ Russie, E-U, Japon, Australie,...

SYNCHROTRONS ASSOCIES : SOLEIL, ESRF, BESSY, __, __, DIAMOND, SLS

Projet « European Spallation Source » (~2020-2025) : Lund (Suède) + Synchrotron...

SPECTROMETRES DISPONIBLES, PAR FAMILLES (approximatif)

FRMII BENSC ILL BNC LLB 2 2 5 4 6 1 2 14 8 6 7 2 (7) 3 11 (9) Q 2 5 10 8 5

Réacteurs à flux continu

TOTAL

ZOOM SUR LA DIFFRACTION

NEUTRONS CH		AUDS	THERMIQUES		FROIDS		AUE
	ILL	LLB	FRMII	BENSC	BNC	ISIS	SINQ
	(45)	(24)	(25)	(19)	(13)	(37)	(22)
Monocristal	D3	5C1	HEIDI	E2	PSD*	SXD	TRICS
	D9	5C2	RESI	E4		ROTAX	
	D10	(3T1)		E5			
	D15	6T2		E6			
	D19	(G56)					
	D23						
	VIVALDI						
Poudre	D1A	3T2	SPODI	E9		HRPD	HRPT
	D1B	G41		(V15)		POLARIS	DMC
	D2B	G42				WISH	
	D20	G61				PEARL	
Matériaux	SALSA	6T1	STRESS-SPEC	E3	MTEST	GEM	POLDI
		G52		E7		ENGIN-X	

Diffractomètres à neutrons chauds ou thermiques λ < 1.54 ? ?

PSD* : φ =10⁵n.cm⁻².s⁻¹

Trouver son spectro. pour une application donnée : The Neutron Pathfinder http://pathfinder.neutron-eu.net/idb DEMANDE DE TEMPS DE FAISCEAU

Procédure d'accès rapide
 Accès facturé (Industriel)
 Demande directe à la Direction

Tests, Environnement simple

Exceptionnel

PRISE EN CHARGE

Pas de problème de facturation...

PRISE EN CHARGE (Labos. Français) :

ILL, LLB :

Guest-house + Transport

FRMII, BENSC, SINQ, ISIS, BNC :

→ FP7/NMI 3 (10% temps)

Manips. simples NPD (SXND) :

→ Envoi possible de l'échantillon + conditions de mesures

SURETE - RADIOPROTECTION

REACTEUR : Installation Nucléaire de Base ILL : INB 67, LLB : INB 101 Régime d'accès restreint

PROCEDURE D'ACCES :

Délai minimum pour la demande d'accès (LLB) Français, Européen : 15 jours HNO Autres : 25 jours HNO.

Certificat Médical SST : Autorisation de Travail sous Rayonnement Ionisant) + Classification radiologique (A, B, NE) → Suivi dosimétrique

RADIOPROTECTION:

- * Contamination : EPI, Contrôle en sortie de zone
- * Dosimétrie active (<u>Dosicard</u> : sauf n (!), X)
- * Dosimétrie passive (Film, TLD, OSL, <u>RPL</u>) : n, γ , X, ...)

Exposition moyenne : < 5µSv /j

(Exposition naturelle $\sim 5\mu Sv/j$)

ATOUTS ET APPLICATIONS CLASSIQUES DES NEUTRONS (0)

INCONVENIENTS :

Faible Flux, Faible section efficace de diff. élastique
 → Echantillons poudre : g monoX : > qq 0.1mm³
 → Limitant, Mesures longues...

ATOUT « ZERO » :

- Peu d'absorption
 - → Environnements complexes, Matériaux massifs

ATOUTS ET APPLICATIONS CLASSIQUES DES NEUTRONS (1)

Etude en température du Zircaloy4 hydruré

Une seule expérience :

- teneur globale en H (phase hydrure, taux dissout dans la phase de lave)
- influence de H sur le gonflement du Zircaloy
- caractérisation cristallographique de Zr(Fe,Zr)₂ et de ZrH_{1,66}

F. Couvreur, DEN/DMT/SEMI RECIPROCS : 6-7 Juillet 2009

ATOUTS ET APPLICATIONS CLASSIQUES DES NEUTRONS (2)

→ Conducteurs ioniques, protoniques (SOFC) : ADP, Lacunes
 → Modélisation de la densité de charge (X-n)

ATOUTS ET APPLICATIONS CLASSIQUES DES NEUTRONS (3)

avec

L'atout intrinsèque des neutrons : la sensibilité au magnétisme

Intensité diffractée :

Non Polarisé : $I = F_N^2 + F_M^2$

Polarisé :

$$I_{\pm} = (F_{N} \pm F_{M})^{2}$$
$$R = \frac{I_{\pm}}{I_{-}} = \left(\frac{F_{N} + F_{M}}{F_{N} - F_{M}}\right)^{2} \approx 1 + 4\frac{F_{M}}{F_{N}}$$

→ Structure magnétique (NP)
→ Modélisation de la densité de spin (P)

électrons non appariés
 → densité de spin = moments mag.
 MEM ou harmoniques sphériques

STRUCTURES MAGNETIQUES

NPD, Non polarisé - Rapide, standard : Suivi de transitions de phases magnétiques

Densité de spin

SXD, Polarisé : Détail des chemins d'interaction dans les composés magnétiques

➔ Mécanisme de couplage ferro dans un composé Cu₂ à double pont azide N₃⁻

M. A. Aebersold et al., J. Am. Chem. Soc. 120 (1998), 523

Tentative de bilan des demandes en diffraction

DEMANDES SUR LES DIFFRACTOMETRES « STRUCTURE » (Hors «Matériaux »)

1) Environnement Complexe, Absorption		
2) Localisation H (Li, B)	10	
3) Contraste absolu	7	
4) Contraste métaux	7	
5) ADP	1	
6) X-n	1	
7) Structures magnétiques (détermination, évolution)	40	
8) Densité de spin	8	
9) Autres (texture,)	9	

→ Multiferroïques, GMR, Piles à Combustible !

EVOLUTION

Source : Spallation/Réacteur

Détecteur : Généralisation des Bidim. He³ à détection de position

- \rightarrow Pb approvisionnement He³ !
- → Evolution des prog. de traitement des données (cf. RX !)

Optique : Benders, Guides elliptiques, Supermirroirs

Densité de spin : Ponctuel vs BiDim

A. Zheludev, et al.. *Phys Rev B* **75**,104427, (2007)

MERCI POUR VOTRE ATTENTION !

Merci à nos Utilisateurs et à G. André, A. Goukassov, B. Gillon, A. Bataille pour les exemples !!!

26%

LLB (Saclay)

IMPLANTATION GENERALE DES SPECTROMETRES

BENSC (Berlin)

BNC : Budapest Research Reactor (Budapest)

ISIS-Target 1 (Didcot, Oxforshire) 6 instruments sur Target 2 depuis Décembre 2008, dont WISH (struct. mag.)

SINQ (Villingen)

Densité de spin

Densité de spin : Maximum d'entropie ou décomposition sur des Y_{Im} → Id. densité de charge en RX

mécanisme de délocalisation de spin (α = 100.5(6) deg.)

M. A. Aebersold *et al., J. Am. Chem. Soc.* 120 (1998), 5238 A. Zheludev *et al., Phys Rev B* 75, (2007), 104427

SOURCES SYNCHROTRON (EUROPE)

SRS Diamond ASTRID-1/2 MAX I,II, III SOLEIL ESRF CELLS – ALBA ELETTRA **DAΦNE** SLS ANKA BESSY ELSA DELTA DESY Siberia-1 (KSRS, Kurtchatov Institute) **DELSY - JINR, Dubna** TNK - F.V. Lukin Institute, Zelenograd ISI-800 – Nat. Acad. of Sciences of Ukraine Kharkov Institute of Physics and Technology Mécanisme de conduction dans une oxyapatite dopée (Microstructure et Comportement - DRECAM/LLB (Orphée))

Apatite $La_{10-x}A_x(SiO_4)_6O_{2+\delta}$ (A = Ba, Sr ou Ca)

 \rightarrow Conductivité ionique contrôlée par surstoechiométrie δ

 δ contrôlé par * Taux de substitution La \rightarrow A

* Valence de A

→ Lacunes sur les sites La/Ba

Localisation des Oxygènes supplémentaires ? 🗇 Mécanisme de conduction ?

Contraste b(La)=8,24, b(Ba)=5,07, b(Si)=4,15 et b(O)=5,80

- * densité nucléaire anisotrope de l'oxygène de conduction
- * Sites préférentiels de substitution

* Sites préférentiels pour les lacunes