

Department of Chemistry

Some Tricks for the Single Crystal Growth of Small Molecules

Prof. Dr. Bernhard Spingler

spingler@chem.uzh.ch

Updated excerpt of a talk held at the 30th European Crystallographic Meeting in Basel, Switzerland on the 29th August 2016

Table of Contents

- Currently used techniques for single crystal growth of small molecules
- Vapor diffusion
- Layering technique
- Copper radiation
- Summary and conclusions
- Acknowledgements

Importance of single crystal growth

- Prerequisite for single crystal X-ray analysis, a fast analytical method that yields the three dimensional arrangement of the elements within the crystal.
- Despite many technical advances, be it on the instrumental (X-ray beam, detector) or on the theoretical side:

Still **single** crystals needed, ideally with dimensions of about 0.05*0.05*0.2 mm³

 Crystal polymorphs also play an extremely crucial role in terms of processing, bioavailability, stability, regulatory affairs, and intellectual property protection.^[1]

Techniques for single crystal growth

- In liquid phases: Main goal to achieve supersaturation that is followed by nucleation/crystal growth
- Sublimation sometimes also helpful
- Achievement of supersaturation:
 - cooling (from hot oil bath, in fridge or deep freezer)
 - reduction of solvent amount (evaporation, forgotten NMR tubes...)
 - change of solvent (vapor diffusion / layering)
- From pure liquids at low temperature
- P. G. Jones Chem. Brit. 1981, 17, 222;
- P. van der Sluis et al. J. Appl. Crystallogr. 1989, 22, 340;
- J. Hulliger Angew. Chem. Int. Ed. 1994, 33, 143;
- A. J. Blake www.nottingham.ac.uk/~pczajb2/growcrys.htm
- G. Santiso-Quiniones, I. Krossing Z. Anorg. Allg. Chem. 2008, 634, 704

Problems for a single crystal analysis

- Chemical purity / identity (e.g. crystals from ^{99m}Tc chemistry)
- Oils / Powders
- Microcrystalline / too small
- Intergrown / twinned
- Not diffracting despite fair size (phase transition?)
- Not solvable
- Not enough data (too weak reflections)
- Residual electron density too high / "unreasonable" electron density

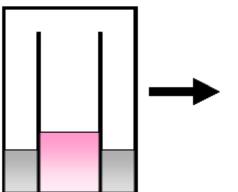
How to overcome the problem of "bad" crystals

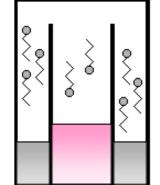
- Common situation: crystallographer wants better crystals
- Despite many references, it is not always clear how to optimize the crystals
- Often only a few milligrams available!
- \Rightarrow No systematic study of the solubility

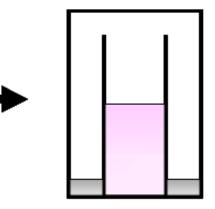
P. G. Jones *Chem. Brit.* 1981, 17, 222
P. van der Sluis, *et al. J. Appl. Crystallogr.* 1989, 22, 340
J. Hulliger, *Angew. Chem. Int. Ed.* 1994, 33, 143
J. Lu and S. Rohani, *Curr. Med. Chem.*, 2009, 16, 884
A. J. Blake, www.nottingham.ac.uk/~pczajb2/growcrys.htm
P. D. Boyle, www.xray.ncsu.edu/GrowXtal.html

Super Nova with Atlas CCD Mo/**Cu** microfocus

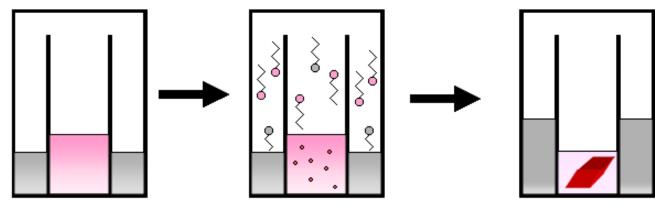
Vapor diffusion


- About 4 mg of substance are dissolved in about 0.5 ml solvent in the inner container.
- About 2.5 ml of antisolvent (normally having a boiling point 5-10 °C higher than solvent) are placed in outer container.
- Wait for days, or a few weeks!
- If (anti)solvents have equilibrated and nothing happened, unscrew vial a bit:
 - → evaporation experiment from a solvent mixture.





Influence of the boiling points


Antisolvent (e.g. diethylether) has a lower boiling

Antisolvent has a higher boiling point than solvent:

B. Spingler, S. Schnidrig, T. Todorova, F. Wild CrystEngComm 2012, 14, 751.

Page 9

Initial solvent choice for vapor diffusion

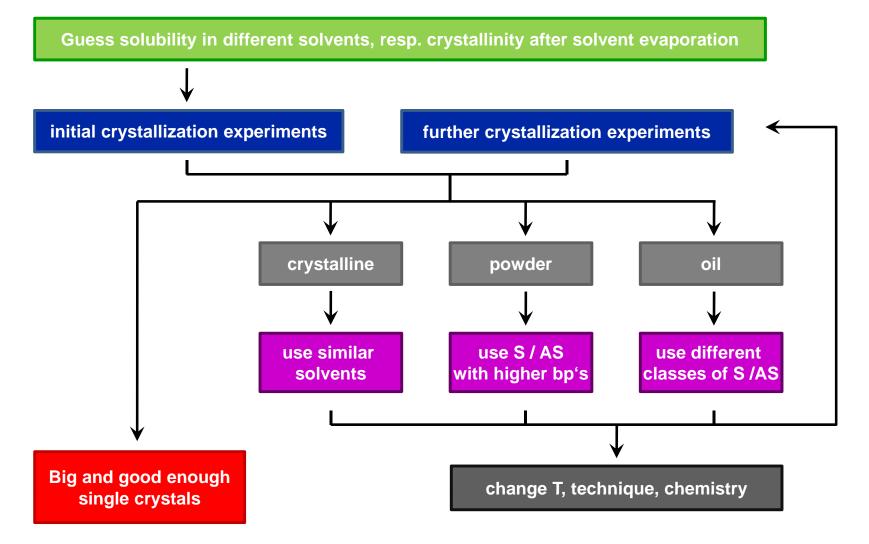
Use information gained during synthesis/purification!

Solvent	Antisolvent
tetrahydrofuran	cyclohexane
methylformate	cyclopentane or hexane (dries out)
methylene chloride	cyclopentane
ethanol	cyclohexane
methanol	hexane or tetrahydrofuran
acetonitrile	tetrahydropyran
acetone	chloroform
water	dioxane

Optimization of the vapor diffusion

Improving crystal form/size:

Substitute solvent and antisolvent with other solvents of the same class having similar dielectric constants.


For example:

Solvent	B.p.	3 \ O°	Antisolvent	B.p.°	C / ε
methylene chloride	40	8.93	cyclopentane	49	1.97
1,1,1-trichloro- ethane	74	7.24	cyclohexane	81	2.02
1,2-dichloroethane	84	10.4	methylcyclohexane	101	2.02

Bernhard Spingler

An extremely simplified flow chart

Bernhard Spingler

Layering I

- About 4 mg of substance are dissolved in ~0.5 ml of a dense solvent and put in a cheap NMR tube.
- With an extra-long Pasteur pipette, a 0.5 cm high protection layer of pure solvent is carefully layered above.
- The lighter antisolvent is carefully layered above, until the NMR tube is full.

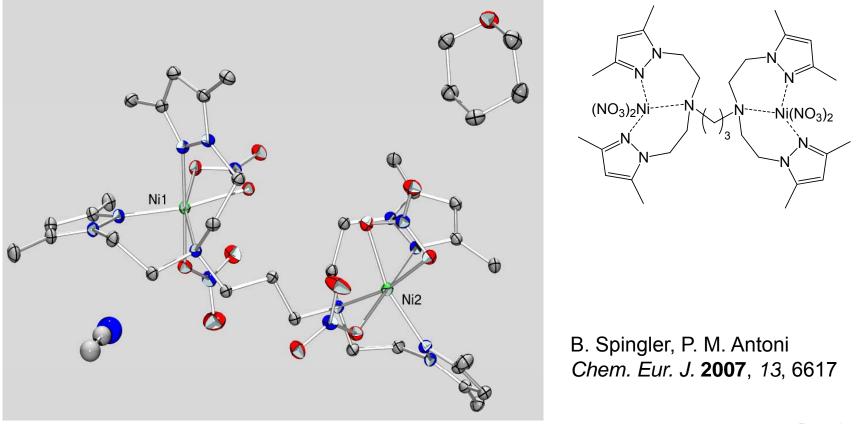
Layering II

- Rather high boiling solvents are used (e.g. dibutyl ether than diethyl ether).
- Different densities of the solvent and the antisolvent are needed. Take change of density due to solute into account!
- Experiment takes more time to equilibrate (several weeks!).
- Once started the experiment is difficult to modify.
- Difficult optical crystal evaluation, if they grow at the bottom of the NMR tube (or when falling down during retrieval attempts).

Excerpt from a table with 107 solvents

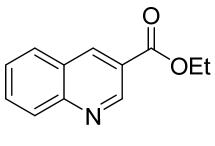
Sum formula	Name	b.p. °C	δ	3
C ₆ H ₁₂ O ₂	t-Butyl acetate	95	0.867	5.67
C ₆ H₅CI	Chlorobenzene	132	1.106	5.69
C ₅ H ₁₀ O ₂	Ethyl propanoate	99	0.892	5.76
C ₄ H ₈ O ₂	Ethyl acetate	77	0.900	6.08
C ₅ H ₁₀ O ₂	Butyl formate	106	0.889	6.10
C ₄ H ₈ O ₂	Methyl propanoate	80	0.915	6.20
C ₂ H ₄ O ₂	Acetic acid	118	1.045	6.20
C ₄ H ₈ O ₂	Propyl formate	81	0.906	6.92
C ₅ H ₁₀ O	2-Methyltetrahydrofuran	78	0.855	6.97
C ₃ H ₆ O ₂	Methyl acetate	57	0.934	7.07
C ₆ H ₁₄ O ₃	Diethylene glycol dimethyl ether	162	0.943	7.23
C ₂ H ₃ Cl ₃	1,1,1-Trichloroethane	74	1.339	7.24
C ₄ H ₁₀ O ₂	Ethylene glycol dimethyl ether	85	0.869	7.30
C ₄ H ₈ O	Tetrahydrofurane	65	0.889	7.52
CH ₂ Br ₂	Dibromomethane	97	2.497	7.77
C ₂ H ₂ Cl ₈	1,1,2,2-Tetrachloroethane	131	1.541	8.50
C ₃ H ₆ O ₂	Ethyl formate	54	0.917	8.57

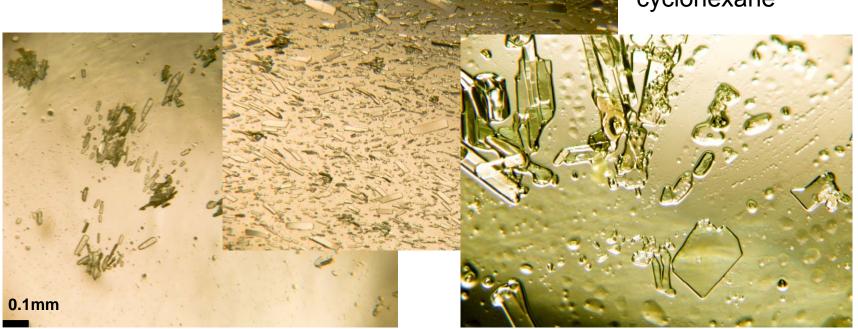
selection criteria for these solvents:


- m.p. < 20° C
- b.p. > 30° C
- few with $b.p. > 150^{\circ}C$
- stability
- toxicity
- cost

B. Spingler, S. Schnidrig, T. Todorova, F. Wild CrystEngComm 2012, 14, 751.

Example I


Recrystallization from acetonitrile versus tetrahydropyran Single crystals from methanol versus tetrahydropyran

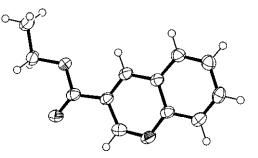


Example II

3-carbethoxyquinoline (vapor diffusion):

THF versus cyclohexane

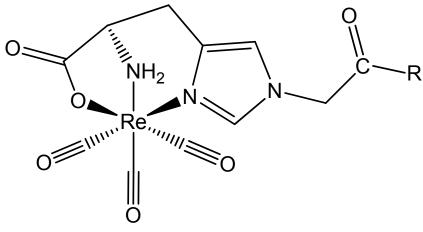
Chloroform versus cyclohexane


Trichloroethylene versus heptane

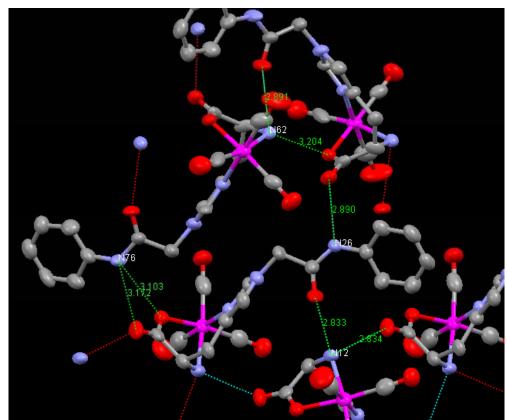
Department of Chemistry

Example II

Bernhard Spingler


Formula	C ₁₂ H ₁₁ NO ₂
Space group	P-1
a [Å]	7.5975(5)
b [Å]	12.2026(7)
c [Å]	12.8137(8)
α [°]	61.607(6)
β [°]	77.247(5)
γ [°]	78.353(5)
Volume [Å ³]	1012.74(11)
Z	4

Crystal size [mm ³]	0.21 × 0.13 × 0.08
Wavelength [Å]	0.71073
Independent reflections	5457 [R _(int) = 0.0402]
Reflections observed (>2sigma(I))	2329
Completeness to theta	99.9 % to 29.13°
Max. and min. transmission	0.9928 and 0.8558
Data / restraints / parameters	5457 / 0 / 273
Goodness-of-fit on F ²	0.810
Final R indices (I>2sigma(I))	R ₁ = 0.0479 , wR ₂ = 0.0782
Largest diff. peak and hole [e.Å-3]	0.163 and -0.268


Bernhard Spingler

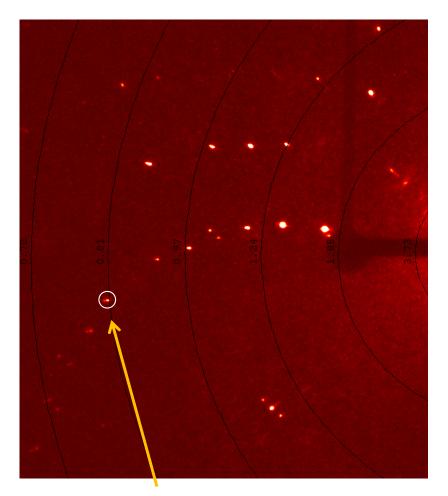
Example III, different chemistry

R: OH, OEt, O*t*-Bu all did not crystallize.

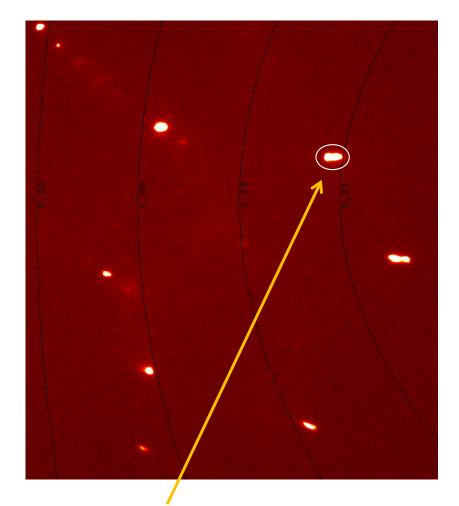
But R: NHPh did.

J. K. Pak, P. Benny, B. Spingler, K. Ortner, R. Alberto *Chem. Eur. J.* **2003**, *9*, 2053. Page 18

Mo versus Cu radiation?


- Traditional knowledge [1]:
 - Mo for crystals with heavy elements
 - Cu for organic crystals (absorption challenges with heavy elements)
- However with new diffractometer and software systems, Cu became an important rescue option for weakly diffracting crystals of high quality containing only a few heavy elements and mainly light elements

[1] A. J. Blake, J. M. Cole, J. S. O. Evans, P. Main, S. Parsons, D. J. Watkin *Crystal Structure Analysis, Principles and Practice*; Oxford University Press, **2009**, pp. 352


Bernhard Spingler

Mo: 60 s exposure

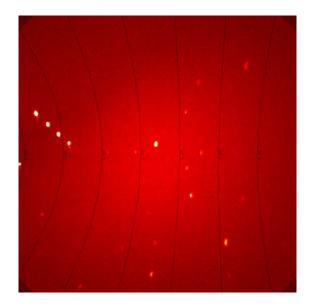
hkl: 1 -10 -21; Ι/σ: 13

Cu: 16 s exposure

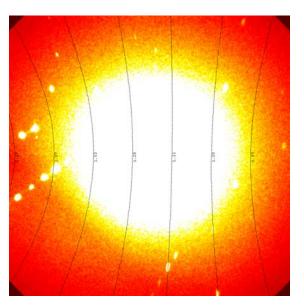
hkl: 1 -10 -21; Ι/σ: 105

Two examples of heavy metal containing structure measured with Cu radiation

Empirical formula	C ₃₉ H _{33.25} Cl ₂ F ₆ N ₈ O _{7.13} P Ru [1]	C ₄₄ H ₅₈ Br₂Co N ₆ O ₈ [2]
Diffractometer	SuperNova dual radiation CCD	SuperNova dual radiation CCD
Space group	<i>P</i> -1	<i>P</i> -1
Abs. coeff. (mm ⁻¹)	5.465	5.664
Crystal size (mm ³)	0.33 x 0.08 x 0.04	0.18 x 0.04 x 0.02
Indep. reflections	15295 [R _{int} = 0.0338]	4532 [R _{int} = 0.0218]
Completeness to θ	95.0 % to 66.97°	99.4 % to 66.97°
Absorption corr.	Semi-empirical from equiv.	Gaussian + Semi-empirical from equiv.
Max. and min. transm.	0.8110 and 0.6223	0.918 and 0.617
Fin. R ind. $[I > 2 \sigma(I)]$	R1 = 0.0760, wR2 = 0.2128	R1 = 0.0235, wR2 = 0.0586
Fin. diff. ρ _{max} (e ⁻ /Å ⁻³)	1.356 and -1.533	0.544 and -0.324

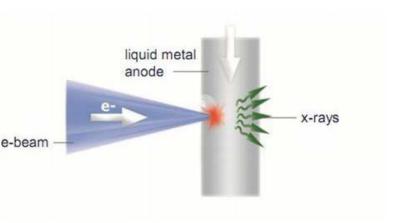

[1] C. Mari, et al. Chem. Eur. J. 2014, 20, 14421

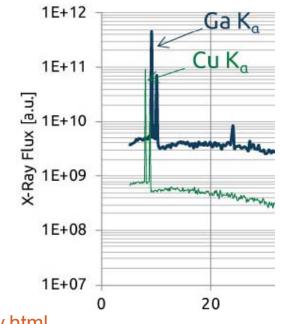
[2] E. Joliat, et al. Dalton Trans. 2016, 45, 1737


Disadvantages of Cu radiation

- Only till 0.8 Å resolution
- Big theta values to be covered mean 3 series of scans
 (→ longer measurement times)
- For cobalt containing compounds and weekly diffracting crystals: observation of X-ray fluorescence

Left: 6s exposure 2.55-0.95 Å


Right: 24s exposure 2.29-0.93 Å

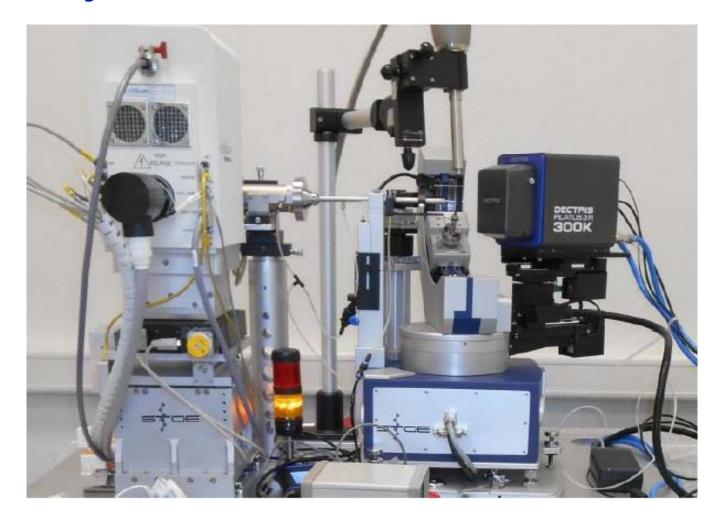


What about Ga radiation?

- Melts at 29.8°C, but actually Ga rich alloys being used
- Liquid metal dissipates heat much quicker than solid one
- Most intensive microsource
- Wavelength 1.34 Å
- No cobalt fluorescence observed
- Air-conditioning needed for diffractometer room, as Ga source most stable for room temperature not varying more than 0.2°C

^[1] Pictures taken from <u>www.excillum.com/technology/metal-jet-technology.html</u>

^[2] M. Otendal, T. Tuohimaa, U. Vogt, H. M. Hertz *Rev. Sci. Inst.* **2008**, *79*, 016102-3


Page 23

Department of Chemistry

Bernhard Spingler

Ga jet with a Pixel detector

Setup at the University of Basel, Switzerland

See: L. Prieto et al. Org. Lett. 2016, 18, 5292

Summary

- Stay with your system as long as it works!
- For optimization of unsatisfactory crystals:
 - Systematically explore the crystallization properties of a solvent class with a similar dielectric constant
 - use an anti-/solvent pair with an inversed polarity
 - change the technique
 - change the anions, add additives
- Do not be afraid of copper radiation, even if you have some heavy elements present!

Acknowledgements

- Prof. Dr. Dongwhan Lee (Seoul National University)
- Dr. Philipp M. Antoni (University of Zurich)
- Dr. Tonya Todorova (University of Zurich)
- Stefan Schnidrig (University of Zurich)
- Dr. Markus Neuburger (University of Basel)
- All the colleagues that have been discussing crystallization issues with me over the last 15 years
- University of Zürich
- Swiss National Science Foundation, BNF