An introduction to small angle scattering

Saclay, November 2024

Marianne Impéror-Clerc

marianne.imperor@universite-paris-saclay.fr

website:

https://softqc.wordpress.com/scattering/

Ressources ... you are not alone ! ③

Books :

• Wim de Jeu, Basic X-ray Scattering for Soft Matter

2016, Oxford University Press, ISBN: 9780198728665

- Ian Hamley, Small-Angle Scattering: Theory, Instrumentation, Data and Applications 2021, John Wiley & Sons, 2021 ISBN: 9781119768302
- Neutrons, X-rays and light, Scattering methods applied to Soft Condensed Matter

2002 and 2024 revised version, Elsevier Science, Editors P. Lindner, Th. Zemb and Julian Oberdisse

Ressources ... you are not alone ! ③

An international community :

SAS Portal : http://www.smallangle.org

SasView software : https://www.sasview.org/

Version 6

Download Version 6.0.0

Released October 24, 2024. See what's new!

Online tutorials about SAS:

https://www.sasview.org/docs/user/tutorial.html

https://sastutorials.org/ (recent initiative in Copenhagen)

complex lattices and quasicrystals

HOME \checkmark CRYSTALLOGRAPHY \checkmark FRANK AND KASPER PHASES \checkmark CLOSE PACKING \checkmark (?) \checkmark QUASICRYSTALS \checkmark SCATTERING \checkmark RESSOURCES \checkmark BLOG CONTACT

https://softqc.wordpress.com/

- 1. Introduction
- 2. Scattering experiment
- 3. Some theory
- 4. Form factor: Spherical objects and other shapes
- 5. Data modelling
- 6. Structure factor: Hexagonal and lamellar mesophases

- 1. Introduction
- 2. Scattering experiment
- 3. Some theory
- 4. Form factor: Spherical objects and other shapes
- 5. Data modelling
- 6. Structure factor: Hexagonal and lamellar mesophases

Elastic or inelastic scattering (energy transfer)

Scattering for soft matter

X-rays (SAXS for Small Angle X-ray Scattering) or neutrons (SANS for Small Angle Neutron Scattering)

Multi-disciplinary field : Soft Matter / Biology / Material Science

Some examples :

- following in real-time the assembly of surfactant micelles
- nucleation/growth of nanoparticles during their synthesis
- folding/unfolding of globular proteins in solution
- polymer material deformation under mechanical strain

Synchrotron sources worldwide

SWING SAXS beamline

- Source: Onduleur U20 sous vide.
- Gamme d'énergie: 5-17 keV (Monochromateur 2 cristaux Si111).
- Deux miroirs de focalisation: horizontal (HFM) and vertical (VFM).
 Taille faisceau niveau échantillon: 375 (H) x 25 (V) μm² (FWHM).

MicroFocus setup

FWHM horizontal: 22,6 μm FWHM vertical: 23,7 μm Flux ~ 10¹¹ ph/s

Australian neutron facility

Measuring SANS on Quokka, ANSTO

•q-range (standard): 4x10⁻³ Å⁻¹ < q < 0.7 Å⁻¹
q_{min} = 6 x 10⁻⁴ Å⁻¹ with focusing lens optics
• a given measurement usually consists 2 or
3 camera settings (sample detector distances).

SAXS experiments at LPS

https://equipes2.lps.u-psud.fr/matrix/morpheus/

X-ray energy; wave-length Mo: 17 keV; λ = 0.71 Å

X-ray energy; wave-length Cu: 8 keV ; λ = 1,54 Å

Scattering versus imaging

High statistics : 🙂 average over about 10¹² objects

In situ experiments 🙂 during synthesis, temperature change, magnetic field ... Coupling with spectroscopy, rheology, stoppros and cons flow

Use of synchrotron sources 🙂

Indirect method 😕 Data modeling, reciprocal space, Fourier transform

Low statistics : \mathfrak{S} Only a few 100's of objects on one image

TEM (Transmission Electron Microscopy) : 😁 demanding sample preparation conditions under vacuum, drying, freezing ... -> artefacts

Environmental TEM 🙂

Direct method 🙂 Image in real space

-> combine both methods 🙂

- 1. Introduction
- 2. Scattering experiment
- 3. Some theory
- 4. Form factor: Spherical objects and other shapes
- 5. Data modelling
- 6. Structure factor: Hexagonal and lamellar mesophases

X-ray Scattering

Scattering images

600 mM

Data reduction

Scattering vector units

$$q = |\vec{q}| = (4\pi/\lambda) \sin\theta = 2\pi/d$$
 (Å⁻¹)

Reciprocal space

Intersection between Ewald sphere and 3D reciprocal space

X-rays are scattered by electrons in matter

Micellar aggregate

atomic coordinates WAXS

number of electrons per unit volume SAXS
-> continuous function :

the electron density $ho_e(\vec{r})$ OR the scattering length density $ho_{SLD}(\vec{r})$

$$\rho_{SLD}(\vec{r}) = r_e \rho_e(\vec{r})$$

contrast between high and low density regions

SLD : Scattering Length Density

Micellar aggregate

$$\rho_{SLD}(\vec{r}) = \frac{1}{V_{\vec{r}}} \sum_{i(atoms) \in V_{\vec{r}}} b_i$$

 $b_i = Z_i r_e$

$$r_e = 2.81794^* 10^{-15} m$$

$$\rho_e(\vec{r}) = \frac{1}{V_{\vec{r}}} \sum_{i(atoms) \in V_{\vec{r}}} Z_i$$

$$\rho_{SLD}(\vec{r}) = r_e \rho_e(\vec{r}) \qquad [L^{-2}]$$

Values of electron densities and SLDs

$ \rho_e(e/nm^3) = \frac{N_e}{v(nm^3)} $	$\frac{1}{0} = \frac{N_e N_{Avogadro} d}{10^{21} M (g/r)}$	$\frac{d(g/cm^3)}{nol)} =$	$= \frac{602N_e d(g)}{M(g/m)}$	$\frac{/cm^3)}{vol))}$		
	Compound	$ ho_e$	$ ho_{\scriptscriptstyle SLD}$	N _e	М	d
		e/nm3	10 ⁻⁶ A ⁻²		g/mol	g/cm³
1 -	water	334	9.41	10	18.016	0.998
$r_e = 2.81794^* 10^{-15} m$	toluene	283	7.97	50	92.14	0.867
	hexane	229	6.45	50	86.18	0.655
	SiO ₂	661	18.63	30	60.09	2.2
$\rho_{SID} = r_{c}\rho_{c}$	Ag	2757	77.69	47	108	10.49
PSLD PEPE	Au	4659	131.29	79	196	19.3
[1-2]	Pt	5163	145.49	78	195	21.45
$\begin{bmatrix} L \end{bmatrix}$	PO (propylene oxide)	333	9.38	32	58.078	1.004
	EO (ethylene oxide)	371	10.45	24	44.052	1.13
	dodecane	259	7.30	98	170.328	0.7487
	hexadecane	267	7.52	130	226.432	0.7733
	-CH2	295	8.31	8	14.026	0.86
	-CH3	168	4.73	9	15.034	0.466
	-C12H25	276	7.78	97	169.32	0.8

Neutrons versus X-rays

Neutrons

b > 0

ne----

Attractive energy potential

b < 0

In 2-dimensions: elastic coherent scattering

Cy M. Jeffries, Zuzanna Pietras and Dmitri I. Svergun, EPJ Web of Conferences 236, 03001 (2020) , https://doi.org/10.1051/epjconf/202023603001

- 1. Introduction
- 2. Scattering experiment
- 3. Some theory
- 4. Form factor: Spherical objects and other shapes
- 5. Data modelling
- 6. Structure factor: Hexagonal and lamellar mesophases

Elastic scattering

no change in energy/wavelength :
$$\left| \overrightarrow{k_i} \right| = \left| \overrightarrow{k_d} \right|$$

Ewald sphere

3D reciprocal space

Phase shift between two scattering points scattered wave **Incident** wave k_d B $\vec{q} = \vec{k_d} - \vec{k_i}$ scattering vector **2 θ** A' B $\overrightarrow{k_i}$ sample $e^{\frac{2i\pi}{\lambda}(A'B-AB')} = e^{+i\vec{k_i}\cdot\vec{r}-i\vec{k_d}\cdot\vec{r}} = e^{-i\vec{q}\cdot\vec{r}}$ 3D Fourier transform

Basic relations

Scattering amplitude

$$A(\vec{q}) = \int_{V_{tot}} \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} d\vec{r}$$
[L]

3D Fourier transform of the SLD function

Intensity == measured quantity

$$I(\vec{q}) = \frac{1}{V_{tot}} \langle |A(\vec{q})|^2 \rangle_t$$
$$[L^{-1}]$$

Normalisation per unit volume, average over acquisition time

 $V_{tot} ==$ Sample volume inside the X-ray beam

Absolute Intensity

What we measure during one acquisition == Number of photons in a pixel

$$N_{pixel}(\vec{q}) = \eta (\phi_0 A T) t_{acq} \Delta \Omega e I(\vec{q}) + BG$$

$$[L^{-1}] \quad I(\vec{q}) = \frac{1}{V_{tot}} \langle |A(\vec{q})|^2 \rangle_t$$

$$[L] \qquad A(\vec{q}) = \int_{V_{tot}} \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} d\vec{r}$$

 $[L^{-2}] \quad \rho(\vec{r}) = r_e \ \rho_e(\vec{r}) : \text{SLD}$

 $[L^{-3}]$ $\rho_e(\vec{r})$: electron density

 r_e = 2.81794×10⁻¹⁵ m Classical radius of electron

- η : detector efficency
- ϕ_0 : incident flux == photons number per unit time and surface area
- A : section of the X-ray beam on the sample
- T : sample transmission
- $(\phi_0 A T)$: integrated transmitted flux
- t_{acq} : acquisition time
- *e* : sample thickness
- $A e = V_{tot}$: sample volume inside the X-ray beam
- Δ : pixel size; r: distance between sample and pixel

•
$$\Delta \Omega = \left(\frac{\Delta}{r}\right)^2$$
 : solid angle for one pixel

case 0

Scattering by a single particle (micelle, NP ...) === Form Factor

Shape, size and orientation of the particle

case 1

Scattering by an assembly of identical/similar particles AND NO interference terms (dilute conditions)

=== total intensity is the sum of the individual intensities scattered by each particle

Statistical average Form Factor (shape, size, polydispersity, orientationnal average)

Average Form Factor

$$I(\vec{q}) = \frac{N}{V_{tot}} P(\vec{q})$$

$$P(\vec{q}) = \frac{1}{N} < \sum_{i=1}^{N} |F_i(\vec{q})|^2 >_t$$

Orientation average (no need for spheres)

Polydispersity == Average over size distribution

$$P(\vec{q}) = \int_0^\infty D(r, R_{ave}, \sigma) |F(\vec{q}, r)|^2 dr$$

case 2

Scattering by an assembly of identical/similar particles AND Interference terms (spatial correlations between the positions of the particles need to be taken into account)

Combination of form factor and structure factor

Interference term with two particles

$$I(\vec{q}) = \frac{1}{V_{tot}} < |A_1(\vec{q}) + A_2(\vec{q})|^2 >_t$$

$$I_1(\vec{q}) = \frac{1}{V_{tot}} < |A_1(\vec{q})|^2 >_t = \frac{1}{V_{tot}} < A_1(\vec{q})A_1^*(\vec{q}) >_t$$

$$I(\vec{q}) = I_1(\vec{q}) + I_2(\vec{q}) + \frac{1}{V_{tot}} < A_1(\vec{q})A_2^*(\vec{q}) + A_2(\vec{q})A_1^*(\vec{q}) >_t$$

Interference term

Form factor and structure factor

$$n = \frac{N}{V_{tot}}$$

N identical particles

Dilute conditions form factor only

$$I(\vec{q}) = n P(\vec{q})$$

Local order Long-range order == lattice $I(\vec{q}) = n P(\vec{q}) S(\vec{q})$

same orientation for non spherical particles !!!

- 1. Introduction
- 2. Scattering experiment
- 3. Some theory
- 4. Form factor: Spherical objects and other shapes
- 5. Data modelling
- 6. Structure factor: Hexagonal and lamellar mesophases
case 0

Scattering by a single particle (micelle, NP ...) === Form Factor

Shape, size and orientation of the particle

Form factor for a spherical particle

Scattering amplitude for a sphere of radius *R* and contrast $\Delta \rho$

$$F_{s}(q,R) = \Delta \rho \int_{V_{s}(R)} e^{-i\vec{q}.\vec{r}} d^{3}\vec{r}$$

$$P_{s}(q,R) = |F_{s}(q,R)|^{2}$$

$$F_{s}(q,R) = \Delta \rho V_{s}(R) f_{s}(q,R)$$

$$F_{s}(q,R) = \Delta \rho V_{s}(R) f_{s}(q,R)$$

$$f_{s}(q,R) = 3 \left(\frac{\sin(qR) - qR\cos(qR)}{(qR)^{3}}\right)$$

$$V_{s}(R) = \frac{4\pi}{3}R^{3}$$

André Guinier (1911-2000)

X-Ray Diffraction In Crystals, Imperfect Crystals, and Amorphous Bodies V = volume of particles R_g = radius of gyration (root mean square distance from center of gravity)

Guinier Law

$$I(q) = n(\Delta \rho)^2 V^2 \exp\left(\frac{-q^2 R_g^2}{3}\right)$$

The main assumptions of the Guinier Law are that:

- q is much smaller than 1/Rg
- Particles scatter independently of each other.
- The scattering bodies are isotropically distributed in the sample.
- Useful for estimating size of particles

Porod Law

-4 slope

 $\lim_{q \to \infty} I(q) = \frac{K_p}{q^4}$

S: total interface area

SLD contrast between the two regions

Interface between two regions with uniform SLDs

Günther Porod (1919-1984)

Otto Kratky (1902-1995)

Polymer gaussian chain: Debye model

case 1

Scattering by an assembly of identical/similar particles AND NO interference terms (dilute conditions)

=== total intensity is the sum of the individual intensities scattered by each particle

Statistical average Form Factor (shape, size, polydispersity, orientationnal average)

Average Form Factor

$$I(\vec{q}) = \frac{N}{V_{tot}} P(\vec{q})$$

$$P(\vec{q}) = \frac{1}{N} < \sum_{i=1}^{N} |F_i(\vec{q})|^2 >_t$$

Orientation average (no need for spheres)

Polydispersity == Average over size distribution

$$P(\vec{q}) = \int_0^\infty D(r, R_{ave}, \sigma) |F(\vec{q}, r)|^2 dr$$

Polydispersity in size

D(r): size distribution function

R : average size

 $\boldsymbol{\sigma}$: standard deviation

PD : polydispersity index

$$\sigma^2 = \frac{1}{R^2} \int D(r)(r-R)^2 dr$$

 $\sigma = PD R$

Spherical form factor, no polydispersity

Spherical form factor with polydispersity

Spherical gold nanoparticle in SAXS

Gold nanocrystal

Surface stabilizers : Organic ligands

$$I(q) = n P_S(q, R)$$

 $n = \frac{N}{V_{tot}}$

contrast between gold and solvent :

Gold volume fraction of nanoparticles : $\phi = n V_S(R)$

$$I(q) = \phi(\Delta \rho)^2 V_S(R) |f_S(q, R)|^2$$

 $\Delta \rho$

P123 spherical micelles

Manet, S. et all., J. Phys. Chem. B (2011) Structure of micelles of a non-ionic copolymer determined by SANS and SAXS

Core-shell model

Manet, S. et all., J. Phys. Chem. B (2011)

- 1. Introduction
- 2. Scattering experiment
- 3. Some theory
- 4. Form factor: Spherical objects and other shapes
- 5. Data modelling
- 6. Structure factor: Hexagonal and lamellar mesophases

Data modelling

- Calculate scattering based on mathematical model. Estimate parameters based on that model.
- Catalog of many possible shapes ③
- Not stand alone, i.e. that model fits does guarantee that you have a unique structural solution. Better add another technique like TEM.
- Minimize the number of free parameters

https://www.sasview.org/

Release of SasView 6.0 in October 2024

SASView GUI

SasView 6.0.0

- 🗆 X

File Edit View Tools Analysis Fitting Window Help

SASView GUI

Works with 2D images as well !

Criterium for a good fit

Least-squared method
$$\chi_R^2 = \frac{1}{N} \sum_{i=1}^N \left| \frac{(I_{data}^i - I_{model}^i)}{\Delta I_{data}^i} \right|^2$$
Reduced chi squared

Data set

$$I_{data}^1, I_{data}^2, ..., I_{data}^N$$

$$\chi_R^2 \simeq 1$$

Errors

$$\Delta I_{data}^1, \Delta I_{data}^2, ..., \Delta I_{data}^N$$

Make sure that errors have realistic values

SASView models

SasView User Documentation » Model Functions

Model Functions

- Cylinder Functions
 - barbell
 - capped_cylinder
 - core_shell_bicelle
 - core_shell_bicelle_elliptical
 - o core_shell_bicelle_elliptical_belt_r
 - core_shell_cylinder
 - cylinder
 - elliptical_cylinder
 - \circ flexible_cylinder
 - flexible_cylinder_elliptical
 - hollow_cylinder
 - pearl_necklace
 - pringle
 - stacked_disks
- Ellipsoid Functions
 - core_shell_ellipsoid
 - ellipsoid
 - triaxial_ellipsoid

- Lamellae Functions
 - lamellar
 - lamellar_hg
 - lamellar_hg_stack_caille
 lamellar_stack_caille
 - lamellar_stack_paracrys
- Paracrystal Functions
 - bcc_paracrystal
 - fcc_paracrystal
 - sc_paracrystal
- Parallelepiped Functions
 - core_shell_parallelepipe_
 hollow rectangular prism
 - hollow_rectangular_prism_thin_walls
 - parallelepiped
 - rectangular_prism
 - Lots of contributors: community based approach
 - Online documentation, possibility to combine models
 - Implement you own models (python and c code)
 - https://marketplace.sasview.org/models/

Sphere Functions

adsorbed layer

• core multi shell

• fuzzy sphere

• linear pearls

onion

raspberry

• superball

• vesicle

• spherical sld

• sphere

• core shell sphere

• multilayer vesicle

• polymer micelle

• micromagnetic FF 3D

• binary hard sphere

Can run from python script or jupyter notebook instead of GUI

- Shape-Independent Functions
 - be_polyelectrolyte
 - broad_peak
 - correlation_length
 - ∘ dab
 - fractal
 - o fractal core shell
 - o gauss lorentz gel
 - gaussian peak
 - gel_fit
 - guinier
 - o guinier porod
 - line
 - lorentz
 - mass_fractal
 - mass_surface_fractal
 - mono_gauss_coil
 - peak_lorentz
 - poly_gauss_coil
 - polymer_excl_volume
 - porod
 - power_law

- ∘ rpa ∘ spinodal
 - star_polymer
 - surface_fractal
 - teubner_strey
 - ∘ two_lorentzian
 - two_power_law
 - unified_power_Rg
- Structure Factors
 - hardsphere
 - hayter_msa
 - squarewell
 - stickyhardsphere

- 1. Introduction
- 2. Scattering experiment
- 3. Some theory
- 4. Form factor: Spherical objects and other shapes
- 5. Data modelling
- 6. Structure factor: Hexagonal and lamellar mesophases

case 2

Scattering by an assembly of identical/similar particles AND Interference terms (spatial correlations between the positions of the particles need to be taken into account)

Combination of form factor and structure factor

Form factor and structure factor

$$n = \frac{N}{V_{tot}}$$

N identical particles

Dilute conditions form factor only

$$I(\vec{q}) = n P(\vec{q})$$

Local order Long-range order == lattice $I(\vec{q}) = n P(\vec{q}) S(\vec{q})$

same orientation for non spherical particles !!!

Structure factor

-> Distances between two particles

- Local order: broad correlation peaks
- Long range order: sharp diffraction peaks

Structure factor for N identical particles

$$S(\vec{q}) = \langle \frac{1}{N} \sum_{\{i\}} e^{-i\vec{q}\vec{R}_i} \sum_{\{j\}} e^{-i\vec{q}\vec{R}_j} \rangle$$

interference term

Sum over all the positions Ri of the particles

For a periodic lattice == Bragg peaks == diffraction

$$\mathbf{L}(x,N) = \left(\frac{\sin(Nx)}{\sin(x)}\right)^2 \qquad S(\vec{q}) = \frac{1}{N}\mathbf{L}(\frac{\vec{q}\cdot\vec{a}}{2},N_a)\mathbf{L}(\frac{\vec{q}\cdot\vec{b}}{2},N_b)\mathbf{L}(\frac{\vec{q}\cdot\vec{c}}{2},N_c)$$

Laue function

 $I(\vec{q}) = n P(\vec{q}) S(\vec{q})$

3D lattice

Structure Factor : local order

- Interactions between particles lead to constructive interference.
- Electrostatic interaction screened by salt addition. Debye Length (nm⁻¹)
- The charge on a particle is determined by the number of bound counter-ions (Li⁺)

Diffraction or scattering ?

Diffraction -> long-range order == lattice in real space

mesophase

an an

Supercrystal of nanoparticles

Bragg peaks

reciprocal space

In real space: convolution product of a particle and a lattice

In reciprocal space: product of the Fourier transforms

 $P(\vec{q})$ = form factor of a particle $I(\vec{q}) = n P(\vec{q}) S(\vec{q})$ $S(\vec{q})$ = TF the lattice

lamellar phase

In real space: convolution product of a bilayer by a 1D lattice

Lamellar phase

$$q_n = n q_1$$

2D image : preferred orientation

2D hexagonal phase

2D hexagonal phase

2D lattice

 d_{11}

 $\frac{\sqrt{3}}{2}a$

$$\vec{a} \cdot \vec{b^*} = \vec{b} \cdot \vec{a^*} = 0$$
$$\vec{a} \cdot \vec{a^*} = \vec{b} \cdot \vec{b^*} = 2\pi$$

reciprocal lattice

 $\vec{q}_{hk} = h \, \overrightarrow{a^*} + k \, \overrightarrow{b^*}$

$$q_{hk} = \frac{2\pi}{d_{hk}} = \frac{4\pi}{\sqrt{3}a}\sqrt{h^2 + k^2 + hk}$$
2D hexagonal phase

hk	h²+k²+hk	M(hk)
10	1	6
11	3	6
20	4	6
21	7	12
30	9	6
22	12	6
31	13	12
40	16	6
32	19	12

$$q_{hk} = \frac{2\pi}{d_{hk}} = \frac{4\pi}{\sqrt{3}a} \sqrt{h^2 + k^2 + hk}$$

Powder sample M(hk): Multiplicity term

2D hexagonal mesoporous materials

Cu-SAXS

D : about 115 cm (Pilatus detector)

Ref LI34 mesoporous SBA15

hexagonal lattice parameter (SWING SOLEIL march 2017)

a = 11.45 nm

hk	d_{ref} (nm)	$q_{ref} (\text{nm}^{-1})$
10	9.92	0.634
11	5.72	1.097
20	4.96	1.267

MCM powder $q_{10}=0.164 A^{-1}$ $q_{11}=0.284 A^{-1}$ $q_{20}=0.328 A^{-1}$ $q_{21}=0.434 A^{-1}$

a = 4.4 nm

3D supercrystals

 cubic

tetragonal

orthorhombic

monoclinic

7 symmetry classes

trigonal

 $\operatorname{triclinic}$

hexagonal

• Triclinic:

$$\frac{a, b, c, \alpha, \beta, \gamma}{\frac{1}{d^2}} = \frac{\frac{h^2}{a^2} \sin^2 \alpha + \frac{k^2}{b^2} \sin^2 \beta + \frac{\ell^2}{c^2} \sin^2 \gamma + \frac{2k\ell}{bc} (\cos \beta \cos \gamma - \cos \alpha) + \frac{2h\ell}{ac} (\cos \gamma \cos \alpha - \cos \beta) + \frac{2hk}{ab} (\cos \alpha \cos \beta - \cos \gamma)}{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma}$$

1 1

• Monoclinic:

$$a, b, c, \beta \ (\alpha = \gamma = 90^{\circ})$$
• Orthorhombic:

$$a, b, c \ (\alpha = \beta = \gamma = 90^{\circ})$$

$$\frac{1}{d^2} = \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{\ell^2}{c^2} - \frac{2h\ell \cos \beta}{ac}\right) \left(\frac{1}{\sin^2 \beta}\right)$$
• Orthorhombic:

$$a, b, c \ (\alpha = \beta = \gamma = 90^{\circ})$$

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{\ell^2}{c^2}$$

• Hexagonal:
$$a$$
 , c ($b = a$, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$)
 $\frac{1}{d^2} = \frac{4}{3}\left(\frac{h^2 + hk + k^2}{a^2}\right) + \frac{\ell^2}{c^2}$

• Tetragonal:
$$a$$
 , c ($b = a$, $\alpha = \beta = \gamma = 90^{\circ}$)
$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{\ell^2}{c^2}$$

Trigonal : hexagonal or rhombohedral

• Rhombohedral unit cell: $a, \alpha \ (a = b = c, \alpha = \beta = \gamma)$ $\frac{1}{d^2} = \frac{(h^2 + k^2 + \ell^2) \sin^2 \alpha + 2(hk + k\ell + h\ell)(\cos^2 \alpha - \cos \alpha)}{a^2(1 - 3\cos^2 \alpha + 2\cos^3 \alpha)}$ • Cubic: a $\frac{1}{d^2} = \frac{h^2 + k^2 + \ell^2}{a^2}$

1	triclinic	37	Ccc2	l t	etragonal	115	P-4 m 2	154	P 3, 2 1		193	P6₃/m c m	ш Ш
1	P1 🔽	38	A m m 2	75	P 4	116	P-4c2	155	R 3 2		194	$P6_3/mmc$	m/u
2	P-1	39	Abm 2	76	P 41	117	P-4b2	156	P 3 m 1		·		U
	1	40	Ama2	77	P4, 🤜	118	P-4n2	157	P31m			cubic	
m	nonoclinic	41	Aba2	78	P 43	119	I-4 m 2	158	P3c1		195	P 2 3	
3	P 2	42	F m m 2	79	14	120	1-4 c 2	159	P31c	3	196	F 2 3	3
4	P21 🔊	43	Fdd2	80	14,	121	I-42m	160	R 3 m		197	123	N
5	C 2	44	I m m 2	81	P-4	122	1-42d	161	R3c		198	P 2, 3	
6	P m	45	lba2	82	1-4	123	P 4/m m m	162	P-31m		199	12,3	
7	Pc 💳	46	lma2	83	P 4/m	124	P4/mcc	163	P-31c		200	Pm 3	
8	Cm 🖕	47	Pmmm	84	P 4 ₂ /m	125	P4/nbm	164	P-3 m 1	З	201	Pn3	
9	Cc	48	Pnnn	85	P4/n 8	126	P4/nnc	165	P-3c1		202	F m 3	3
10	P 2/m	49	Pccm	86	P 4 ₂ /n	127	P4/mbm	166	R -3 m	I.S.A.	203	Fd 3	
11	P 2,/m	50	Pban	87	I 4/m	128	P4/mnc	167	R - 3 c		204	I m 3	
12	C 2/m 🗲	51	Pmma	88	/4₁/a	129	P 4/n m m		1	1	205	Pa3	
13	P 2/c 🗧	52	Pnna	89	P422	130	P4/ncc E		hexagon	al	206	1 a 3	
14	P2,/c	53	Pmna	90	P 4 21 2	131	P4 ₂ /mmc =	168	P 6		207	P432	
15	C 2/c	54	Pcca	91	P4,22	132	P4-/mcm	169	P 61		208	P4,32	
· · ·		55	Pbam	92	P4,2,2 C	133	P4 ₂ /nbc E	170	P 65		209	F432	
ort	horhombic	56	Pccn	93	P4222	134	P4./nnm 🐺	171	P 62	9	210	F4,32	~
16	P222	57	Pbcm	94	P 4, 2, 2 =	135	P 4, m n m	172	P 6		211	1432	
17	P 2 2 2,	58	Pnnm	95	P4,22	136	P4,/mbc	173	P 62		212	P4,32	V
18	P 2, 2, 2	59	Pmmn	96	P 43 21 2	137	P 4_/n m c	174	P -6	6	213	P4,32	
19	P 2, 2, 2, N	60	Pbcn	97	1422	138	P 4 ₂ /n c m	175	P 6/m	J	214	14,32	
20	C222. N	61	Pbca ╘	98	14,22	139	I 4/m m m	176	$P 6_2/m$	1	215	P-43m	
21	C222 N	62	Pnma 🗲	99	P4mm	140	I 4/m c m	177	P622		216	F-43m	Д
22	F222	63	Cmcm 📜	100	P4bm	141	I4₁/amd	178	P 6, 2 2		217	1-43m	
23	1222	64	Cmca 旨	101	P4, cm	142	I4, lacd	179	P 6₅ 2 2	2	218	P-43n	~
24	12, 2, 2,	65	Cmmm	102	$P4_{2}nm$			180	P 6, 2 2	2	219	F-43c	P
25	Pmm2	66	Cccm	103	P4cc E		$\operatorname{trigonal}$	181	P 6₄ 2 2	9	220	1-43d	
26	Pmc2 ₁	67	Cmma	104	P4nc 🧧	143	I P 3	182	P 6, 2 2		221	Pm3m	
27	Pcc2	68	Ccca	105	P42mc 🖻	144	P 3,	183	P6mm	n	222	Pn3n	
28	Pma2	69	Fmmm	106	P4₀bc ◀	145	P 32	184	P6cc		223	Pm3n	_
29	Pca2, 🔿	70	Fddd	107	14 m m	146	R3 "	185	$P_{6_2} c_m$	B	224	Pn3m	3
30	Pnc2 🖕	71	lmmm	108	I4 c m	147	P-3	186	P6 ₃ mc	9	225	Fm3m	3
31	Pmn2,	72	lbam	109	14, m d	148	R-3 0	187	P-6 m 2		226	Fm3c	-
32	Pba2' 🗧	73	lbca	110	14, cd	149	P312	188	P-6c2	2	227	Fd3m	
33	Pna2 ₁	74	lmma	111	P-42m _	150	P321	189	P-62m	2	228	Fd3c	
34	Pnn2	1		112	P-42c ╘	151	P 3, 1 2 🔊	190	P-62c	9	229	1 m 3 m	
35	C m m 2	1		113	P-42, m 🔊	152	P 3, 2 1 °	191	P 6/m m n	n	230	la3d	
36	C m c 2,	1		114	P-421c 🛛	153	P 3, 12	192	P6/mcc			l	
	1						-						

All 230 space groups

hexagonal and rhombohedral unit cells

https://www.periodni.com/crystal-systems-and-bravais-lattices.html