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Introduction

http://gisaxs.com/index.php/GISAXS

GISAXS combines the accessible length scales of small-angle X-ray scattering (TSAXS) 
and the surface sensitivity of grazing incidence X-ray techniques (GID, XRR, etc.)
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Introduction

• Rotating anode (λ = 0.154 nm)

• Linear position-sensitive detector

• Grazing incidence and exit angles
� ϕi = ϕf = 0.229°

A look back at the origins of GISAXS



4

Introduction

Brief overview of bibliographic data (1989–2024)

Web of ScienceTM database

> 75% synchrotron
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Why using grazing incidence conditions ?

• Small size of the incident beam limits the volume irradiated

• Absorption causes a strong decrease of the signal-to-noise ratio 

Si

Limitations of transmission SAXS at normal incidence
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Why using grazing incidence conditions ?

• Small size of the incident beam limits the volume irradiated

• Absorption causes a strong decrease of the signal-to-noise ratio

• qz ≈ 0

 In-plane information only

Cylinders

(D = 10 nm)

Limitations of transmission SAXS at normal incidence
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Why using grazing incidence conditions ?

• Small size of the incident beam limits the volume irradiated

• Absorption causes a strong decrease of the signal-to-noise ratio

• qz ≈ 0

 In-plane information only

 SAXS patterns are centrosymmetric

6-fold symmetry !

Truncated tetrahedron

(D = 20 nm, H = 15.8 nm, γ = 70°)

Limitations of transmission SAXS at normal incidence
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS (αi < 1°)

• Increased footprint of the primary beam at the sample surface

• Reduced depth of penetration (typically a few nanometers below αc)

Normal 
incidence

Grazing
incidence

Si
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS (αi < 1°)

• Increased footprint of the primary beam at the sample surface

• Reduced depth of penetration (typically a few nanometers below αc)

• Enhancement of surface sensitivity

10 keV
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS (αi < 1°)

• Increased footprint of the primary beam at the sample surface

• Reduced depth of penetration (typically a few nanometers below αc)

• Enhancement of surface sensitivity

In-depth distribution of electric field intensity can be varied in a controlled way, 
enabling enhancement of the scattering from supported or buried nanostructures
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS (αi < 1°)

• Increased footprint of the primary beam at the sample surface

• Reduced depth of penetration (typically a few nanometers below αc)

• Enhancement of surface sensitivity

• Scattering vector

 In-plane and out-of-plane information are made accessible
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS

Cylinder (D = 10 nm, H = 10 nm)Cylinder (D = 10 nm, H = 5 nm)
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS (αi < 1°)

• Increased footprint of the primary beam at the sample surface

• Reduced depth of penetration (typically a few nanometers below αc)

• Enhancement of surface sensitivity

• Scattering vector

 In-plane and out-of-plane information are made accessible

 Full 3D reciprocal space mapping by changing ϕ (±180°)
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS

Truncated tetrahedron

(D = 20 nm, H = 15.8 nm, γ = 70°)
3-fold symmetry recovered !
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Why using grazing incidence conditions ?

Advantages and added values of GISAXS
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GISAXS: some points of vigilance 

Influence of the angle of incidence

Ag cylinder

(D = 10 nm, H = 10 nm)
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GISAXS: some points of vigilance

Influence of the angle of incidence

Lost information !
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GISAXS: some points of vigilance

Influence of the sample length

Footprint correction needed !

d
e
te

c
to

r

“Large” footprint
(l = 50 mm)

“Small” footprint
(l = 10 mm)

Reference
(“point-like” sample)

Ag cylinder @ 10 keV

(D = 20 nm, H = 10 nm)
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GISAXS: some points of vigilance

Influence of the sample curvature

• Convex

• Concave

Kamiński et al. (in preparation)
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GISAXS: some points of vigilance

Influence of the sample curvature

• Convex

• Concave

Kamiński et al. (in preparation)
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Distorted Wave-Born Approximation (DWBA)

Incident 

wave

Scattered

wave

Si
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Distorted Wave-Born Approximation (DWBA)

Incident 

wave

Scattered

wave
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Distorted Wave-Born Approximation (DWBA)

Incident 

wave

Scattered

wave

Ag cylinder

(D = 10 nm, H = 10 nm)
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Distorted Wave-Born Approximation (DWBA)

Incident 

wave

Scattered

wave
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Distorted Wave-Born Approximation (DWBA)

Truncated tetrahedron

(D = 100 nm, H = 50 nm, γ = 70°)

DWBA

BA 70°

Term 2

Term 1

Term 1
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Distorted Wave-Born Approximation (DWBA)

Ag cylinder @ 10 keV
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Distorted Wave-Born Approximation (DWBA)

Ag cylinder @ 10 keV
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Distorted Wave-Born Approximation (DWBA)

Ag cylinder @ 10 keV
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Distorted Wave-Born Approximation (DWBA)

Ag cylinder @ 10 keV
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Gold islands sandwiched between carbon layers

System Si ⁄⁄ Ni ⁄ C ⁄ Au ⁄ C

E = 6.99 keV

Babonneau et al., Phys. Rev. B 80 (2009) 155446
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Gold islands sandwiched between carbon layers

System Si ⁄⁄ Ni ⁄ C ⁄ Au ⁄ C

E = 6.99 keV

Sim.Sim. Exp.Exp.

Babonneau et al., Phys. Rev. B 80 (2009) 155446



32

Photochromic Ag/TiO2 thin films

∼1 mW cm-2

15 min

λ < 400 nm

λ > 400 nm

∼50 mW cm-2

1 h

λ = 460 nm
10 mW cm-2

60 min

λ = 520 nm
11 mW cm-2

30 min

λ = 630 nm
10 mW cm-2

30 min

λ > 400 nm
480 mW cm-2

10 min

Ohko et al., Nat. Mater. 2 (2003) 29
Naoi et al., J. Am. Chem. Soc. 126 (2004) 3664

The colored film is 
bleached under 

visible light irradiation

The bleached film 
regains its color under 

UV light irradiation
• Vis. light: Size-selective Ag oxidation by photo-induced 

electron transfer at the localized surface plasmon resonance

• UV light: Photocatalytic reduction of the Ag+ ions to metallic Ag
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Photochromic Ag/TiO2 thin films

λvis = 488 nm
75 W cm-2

10 min

λUV = 244 nm
30 kW cm-2

150 ms

Crespo-Monteiro et al., Adv. Mater. 22 (2010) 3166
Diop et al., Appl. Spectrosc. 6 (2017) 1271

λvis = 647 nm
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Photochromic Ag/TiO2 thin films

(λ = 350 – 950 nm)

λvis = 532 nm (∼3.5 W cm-2)

λUV = 360 nm (∼1 W cm-2)

(λXray = 0.1078 nm)

Real-time investigations under UV and visible laser irradiation 

E = 11.5 keV

Coll. N. Destouches

Babonneau et al., Nano Futures 2 (2018) 015002

Ag nanoparticles grown in a 
nanoporous TiO2 film by reduction 
after immersion into an aqueous 
ammoniacal silver solution

• Film thickness: ~160 nm

• Pore diameter: ~8 nm
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Photochromic Ag/TiO2 thin films

Real-time investigations under UV and visible laser irradiation 

Babonneau et al., Nano Futures 2 (2018) 015002

X-rays

Xpad
detector

X-rays

White light
source

Sample

Vis. Laser
532 nm

UV laser
360 nm

Sample

X-rays

E = 11.5 keV

Coll. N. Destouches
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Photochromic Ag/TiO2 thin films

Real-time investigations under UV and visible laser irradiation 

Babonneau et al., Nano Futures 2 (2018) 015002

E = 11.5 keV

Coll. N. Destouches

TiO2 Pores D = 7.8 nm H/D = 0.72

Ag-TiO2 Ag NPs D = 6.8 nm H/D = 0.77

Ag-TiO2
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Photochromic Ag/TiO2 thin films

Real-time investigations under UV and visible laser irradiation 

Babonneau et al., Nano Futures 2 (2018) 015002

E = 11.5 keV

Coll. N. Destouches

TiO2 Pores D = 7.8 nm H/D = 0.72

Ag-TiO2 Ag NPs D = 6.8 nm H/D = 0.77
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Photochromic Ag/TiO2 thin films

Real-time investigations under UV and visible laser irradiation 

Babonneau et al., Nano Futures 2 (2018) 015002

E = 11.5 keV

Coll. N. Destouches

• Repeatable photochromic behavior with 
a good contrast between the colored 
and colorless states

• Photo-oxidation process (X-ray + vis.) is 
always faster than the photocatalytic 

reduction process (UV)

• Efficiency of the photo-activated 
reduction process (UV exposure) is 
degraded after 2 cycles
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In situ and real-time studies of ultrathin silver films

Ag layer

SiO2 substrate

Simulation
‘Ideal case’

• Ultrathin Ag layers (thickness tAg < 10 nm)

− High optical transmittance (vis.) / 
reflectance (IR)

− High electrical conductivity

− High thermal conductivity

− High ductility

Kim et al., Mater. Res. Bull. 149 (2022) 111703

https://energyeducation.ca/encyclopedia/E-coating

Flexible electronics
Low-emissivity glazing
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In situ and real-time studies of ultrathin silver films

tAg = 10.1 nmtAg = 6.3 nmtAg = 2.5 nmtAg = 1.3 nm

Simonot et al., Appl. Surf. Sci. 544 (2021) 148672 Room temperature magnetron sputtering deposition Si3N4 / Ag (tAg) / Si3N4

Experiment
‘Real case’

Ag layer

SiO2 substrate

Simulation
‘Ideal case’

• Early stages dominated by strong optical absorption (localized surface plasmon resonance) and high electrical resistivity

• Growth strategies needed for producing conductive and transparent Ag layers � use of gas additives (e.g., O2, N2, etc.)



41

In situ and real-time studies of ultrathin silver films

2D detector

(GISAXS)

Sample

Ag target

2D detector

(GIXRD)

Curvature

• Simultaneous measurements during magnetron sputtering Ag deposition on SiOx/Si

− GISAXS: island morphology and organization

− GID: crystal structure, grain size and orientation…

− Substrate curvature measurements: stress evolution

− Photon energy 15 keV

− Incident angle 0.1°− 0.25°

− Beam size 200×20 µm2

SixS beamline

− Deposition rate ∼0.017 nm/s

− Working pressure ∼4×10-3 mbar
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In situ and real-time studies of ultrathin silver films

2D detector

(GISAXS)

Sample

Ag target

• Simultaneous measurements during magnetron sputtering Ag deposition on SiOx/Si

− GISAXS: island morphology and organization

− GID: crystal structure, grain size and orientation…

− Substrate curvature measurements: stress evolution

− Deposition rate ∼0.017 nm/s

− Working pressure ∼4×10-3 mbar

SixS beamline

sample

laser

CCD detector
video
acq.

Multi-beam Optical Stress Sensor (MOSS) Curvature
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In situ and real-time studies of ultrathin silver films

G. Abadias, A. Michel, K. Solanki (P’)
M. Kamiński, B. Krause (KIT)
A. Coati, Y. Garreau, A. Resta, A. Vlad (SOLEIL)

• GID • Stress• GISAXS

Ag on SiOx/Si (pN/ptot = 0)
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In situ and real-time studies of ultrathin silver films

Nominal thickness tAg (nm)

pN/ptot = 0

pN/ptot = 0.11
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In situ and real-time studies of ultrathin silver films

• GID • Stress• GISAXS

Yun et al., Nanoscale 12 (2020) 1749

G. Abadias, A. Michel, K. Solanki (P’)
M. Kamiński, B. Krause (KIT)
A. Coati, Y. Garreau, A. Resta, A. Vlad (SOLEIL)
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Gold NPs in topological defects of smectic films

d0 = 3.16 nm

smectic phase

8CB/rubbed PVA
interface

air/8CB interface

Periodic array of flattened hemicylinders with unidirectional orientation

− Internal structure of the hemicylinders ?

− Self-assembly of gold nanoparticles ?

Coll. E. Lacaze

d0

8CB molecule



P/2 = 300 nm
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Gold NPs in topological defects of smectic films

E = 18.43 keV
TSAXS (αi = 90°)

Coll. E. LacazeΛ = 5.8 nm

D = 4.5 nm

Do et al., Nano Lett. 20 (2020) 1598
Niyonzima et al., Phys. Rev. Lett. (accepted)
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Gold NPs in topological defects of smectic films

E = 18.43 keV
TSAXS (αi = 90°)

Coll. E. LacazeΛ = 5.8 nm

D = 4.5 nm

P/2 = 300 nm

GISAXS (αi = 0.2°)

Do et al., Nano Lett. 20 (2020) 1598
Niyonzima et al., Phys. Rev. Lett. (accepted)
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Gold NPs in topological defects of smectic films

E = 18.43 keV
TSAXS (αi = 90°)

Coll. E. Lacaze

GISAXS (αi = 0.2°)

ID13 beamline

nano-GISAXS
αi = 0.6° E = 15 keV
Beam size ∼150 nm

Step ∼250 nm



MERCI
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