Theory of Groups and coset decomposition

Pierre-Emmanuel Petit
IMN Nantes

Outlook

- Introduction
- Brief historical account
- A non-rigorous mathematical exposé
- A paraphrase of Flack (1987) : Twins and coset decomposition of point groups
- Conclusion
- An exercise using Jana2006

Introduction

(Pseudo-)merohedral twins :

- several descriptions may be used to describe a particular twin
- several distinct twins may be expressed simultaneously

Group theory and coset description of point group allow to :

- check all possibilities of twins using the metrical information on the lattice
- check the orientation of the structure / lattice

Brief historical account

- Joseph-Louis Lagrange (1771)

Algebraic equations
Some ideas about groups

- Evariste Galois (1830) $\boldsymbol{\rightarrow} \mathbf{1 8 5 0}$

Algebraic equations - group theory
Coset decomposition

- Developpements of group theory (Felix Klein - 1872 ...)
- Sohnke (1867) \rightarrow Schönflies-Fedorov (~ 1890)

Space groups

- George Friedel (1904)

Twins

- 1970's and 80's : use of coset decomposition / twins

Mathematical introduction

Roots of a polynom

$$
\begin{aligned}
& \text { Example : } \mathrm{Z} \text { a complex number ; } \quad Z^{n}=1 \\
& \qquad Z=e^{i 2 \pi k / n}, k=0,1 \ldots(n-1)
\end{aligned}
$$

Links between geometry and algebra

Group theory

- Definition of a group :

An ensemble with a composition law (closure relation) and :

- associativity
- existence of a neutral element
- existence of an inverse

Not necessary commutative (if commutative, the group is called abelian)
May be finite or not

- Order of the group: its cardinal card(G)
- Multiplication table (finite groups)
- Abstract group
- Subgroup / supergroup

Group theory

Crystallographic point groups :

Table 1.E.2 The 18 abstract groups corresponding to the 32 crystallographic point groups

Point group	Order of the group	Characteristic relations
1	1	$g=e$
$\overline{1}, 2, m$	2	$g^{2}=e$
3	3	$g^{3}=e$
$4, \overline{4}$	4	$g^{4}=e$
$2 / m, m m 2,222$	4	$g_{1}^{2}=g_{2}^{2}=\left(g_{1} g_{2}\right)^{2}=e$
$6, \overline{3}, \overline{3}$	6	$g^{6}=e$
$32,3 m$	6	$g_{1}^{3}=g_{2}^{2}=\left(g_{1} g_{2}\right)^{2}=e$
$m m m$	8	$g_{1}^{2}=g_{2}^{2}=g_{3}^{2}=\left(g_{1} g_{2}\right)^{2}=\left(g_{1} g_{3}\right)^{2}=\left(g_{2} g_{3}\right)^{2}=e$
$4 / m$	8	$g_{1}^{4}=g_{2}^{2}=g_{1} g_{2} g_{1} g_{2}=e$
$4 m m, 422, \overline{4} 2 m$	8	$g_{1}^{4}=g_{2}^{2}=\left(g_{1} g_{2}\right)^{2}=e$
$6 / m$	12	$g_{1}^{1}=g_{2}^{2}=g_{1} g_{21} g_{1} g_{2}=e$
3	$g_{1}^{6}=g_{2}^{2}=\left(g_{1} g_{2}\right)^{2}=e$	
$3 m, \overline{6} 2 m, 6 m m, 622$	12	$g_{1}^{3}=g_{2}^{2}=\left(g_{1} g_{2}\right)^{3}=e$
23	12	$g_{1}^{2}=g_{2}^{2}=g_{3}^{2}=\left(g_{1} g_{2}\right)^{2}=\left(g_{1} g_{3}\right)^{2}=\left(g_{2} g_{3}\right)^{4}=e$
$4 / m m m$	16	$g_{1}^{4}=g_{2}^{2}=\left(g_{1} g_{2}\right)^{3}=e$
$432,43 m$	24	$g_{1}^{3}=g_{2}^{3}=\left(g_{1}^{2} g_{2} g_{1} g_{2}\right)^{2}=e$
$m \overline{3}$	24	$g_{1}^{2}=g_{2}^{2}=g_{3}^{2}=\left(g_{1} g_{2}\right)^{2}=\left(g_{1} g_{3}\right)^{2}=\left(g_{2} g_{3}\right)^{6}=e$
$6 / m m m$	24	$g_{1}^{4}=g_{2}^{6}=\left(g_{1} g_{2}\right)^{2}=e$
$m \overline{3} m$	48	

From : Giacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Giacovazzo, C. Fundamentals of Crystallography; Oxford University Press, Oxford, 2002

Group theory

Group, subgroup, supergroup relationships for crystallographic point groups:

From International Tables of Crystallography

Group theory: Cosets and coset decomposition

Definition: $\mathbf{H}=\{\boldsymbol{h 1}, \boldsymbol{h} 2 . .$.$\} subgroup of \mathbf{G}$. Let \boldsymbol{g} be a an element of \mathbf{G} contained or not in H .
$g . H=\{g . h 1, g . h 2, \ldots\}$ is a left coset
$H . g=\{h 1 . g, h 2 . g, \ldots\}$ is a right coset
Trivial cosets : H himself; if $\mathrm{H}=\{e\} . .$. ; if $\mathrm{H}=\mathrm{G} . .$.
Definition : an equivalence relation is a binary relation, which is reflexive, symmetric, and transitive. Such an equivalence relation allow to define equivalence classes in an ensemble and to define a partition (of this ensemble).

Theorem : Let \boldsymbol{a} and \boldsymbol{b} be elements of G. The relation $\boldsymbol{a} \sim \boldsymbol{b}$, if there exist an element h of H such that $a=b . h$, is an equivalence relation. In other words, the left cosets of H in G form a partition of G . This is called a left coset decomposition of G in H .

Left cosets = classes (latérales) à gauche

Group theory: Coset decomposition

H subgroup of G. Left coset decomposition of \mathbf{G} in H :

$$
G=e . H \bigcup g_{1} . H \bigcup \ldots
$$

Example 1: $\quad 2 / m=(1,2,1, m)=1 .(1,2) \cup m .(1,2)$

$$
2 / m=1 .(1,2) \cup 1 .(1,2)
$$

A coset decomposition is unique, but the system of representatives is not.
Example 2 : (left) coset decomposition of relative integers in even (relative) integers
\rightarrow coset decomposition of an infinite group into two infinite groups

Group theory

Lagrange's theorem : H subgroup of \mathbf{G} (finite). The order of H divides that of \mathbf{G}.
$P=\operatorname{card}(G) / \operatorname{card}(H)$ is called the index of H relative to G and is noted [$\mathrm{G}: \mathrm{H}$]. It corresponds to the number of left (right) cosets of H in \mathbf{G}

Proof : use cosets...
[$\mathrm{G}: \mathrm{H}$] being the number of cosets, this allows to generalize the concept of index to infinite groups. See previous example2.

Definition : H proper (=invariant) subgroup of \mathbf{G} : for each g of \mathbf{G}, $\boldsymbol{g}^{-1} . \mathrm{H} . \mathrm{g}=\mathrm{H}$

This is equivalent to say that $\mathbf{g . H}=\mathrm{H} . \mathrm{g}$ for each g of G , i.e., left and right cosets are equal.

Group theory : factor group

H is a normal subgroup of \mathbf{G}
G/H is an ensemble formed by the cosets of H in \mathbf{G}
We define a composition law o:
\{g.H\}o\{f.H\} = g.H.f.H where g and f are two elements of G
0 is an internal composition law :
g.H.f.H $=$ g.H.H.f $=$ g.H.f $=$ g.f. H is also a coset of H in G (g.f is an element of G)

0 is associative, admits a neutral element (H), and an inverse for each element (i.e., each coset) $\rightarrow \mathbf{G} / \mathbf{H}$ is a group, called factor or quotient group

Example 1: $\mathbf{G}=\mathbf{4}=\left\{\mathbf{1}, \mathbf{4}, \mathbf{2}, \mathbf{4}^{3}\right\} \quad \mathrm{H}=\{\mathbf{1}, \mathbf{2}\} \quad \mathrm{G} / \mathrm{H}=\left\{\{\mathbf{1}, \mathbf{2}\},\left\{\mathbf{4}, \mathbf{4}^{3}\right\}\right\}$
Example 2 : relative integers, E and $\mathrm{O} \quad \mathbf{G} / \mathbf{H}=\{\mathbf{E}, \mathrm{O}\}$
$\mathbf{G} \rightarrow \mathbf{G} / \mathbf{H}$ is an example of homorphism ("many to a few")

Twins and coset decomposition - Flack (1987)

Flack, H. D. The Derivation of Twin Laws for (Pseudo-)Merohedry by Coset Decomposition. Acta Crystallographica Section A 1987, 43 (4), 564-568.
https://doi.org/10.1107/S0108767387099008

Central idea : for (pseudo-)merohedry : to perform a decomposition of the point group of the lattice into the (left) cosets of the point group of the crystal

This will allow to :

- check all possibilities of twin laws using the metrical information on the lattice
- check the orientation of the structure / lattice

In pseudo-merohedry, the metrically higher symmetry of the lattice is never exact and exists only within the experimental error.

Twins and coset decomposition - Flack (1987)

- a coset decomposition is unique, but this is not necessarily the case for the representative of this coset $\left(g_{1} \cdot \mathrm{H}=g_{2} \cdot \mathrm{H}\right.$ with g_{1} and g_{2} different elements of G)
- same arbitrariness for the definition of twin laws

The author proposes two algorithms to :

- follow some conventions in the description or twin laws (use twin axes rather than planes if this is possible)
- or to have a description of twins strongly bound to a centre of symmetry (nevertheless using twofold axis wherever possible)

Seven "Laue" point groups :
I, 2/m, mmm, 4/mmm, $32 \mathrm{~m}, 6 / \mathrm{mmm}$, m 3 m

Twins and coset decomposition - An example

Crystal : point group 2/m but lattice metrical information "almost" orthorhombic
$\operatorname{Card}(2 / \mathrm{m})=4 \quad \operatorname{Card}(\mathrm{mmm})=8 \quad[\mathrm{mmm}: 2 / \mathrm{m}]=2$
2 cosets

$$
\begin{aligned}
& 2 / m=\left(1,2_{[010]}, 1,2_{[010]}\right) \\
& m m m=1.2 / m \bigcup \overline{2}_{\text {[001] }} .2 / m
\end{aligned}
$$

Conclusions

- for the case of (pseudo-)merohedry : the interest to have such an algorithm directly integrated into programs to analyze integrated twinned data
- the interest of coset decomposition of space groups in cristallography?
- to analyse some phase transitions
- also for twin law analysis

Bibliography

- Boulliard, J.-C. Le Cristal et Ses Doubles: Aperçu Historique, Scientifique, Descriptif Des Macles et Accessoirement Des Épitaxies Dans Le Monde Minéral et Le Laboratoire; CNRS éd., 2010.
- Flack, H. D. The Derivation of Twin Laws for (Pseudo-)Merohedry by Coset Decomposition. Acta Crystallographica Section A 1987, 43(4), 564-568. https://doi.org/10.1107/S0108767387099008.
- Giacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Giacovazzo, C.

Fundamentals of Crystallography; Oxford University Press, Oxford, 2002

- Guymont, M.; Gratias, D.; Portier, R.; Fayard, M. Space Group Theoretical Determination of Translation, Twin, and Translation-Twin Boundaries in CellPreserving Phase Transitions. physica status solidi (a) 1976, 38(2), 629-636. https://doi.org/10.1002/pssa. 2210380225.
- Hahn, T.; Klapper, H. Twinning of Crystals. International tables for crystallography 2006, 500, 413-483.
- Parsons, S. Introduction to Twinning. Acta Cryst D 2003, 59 (11), 1995-2003. https://doi.org/10.1107/S0907444903017657.
- Quiquandon, M.; Gratias, D.; Sirindil, A.; Portier, R. Merohedral Twins Revisited:

Quinary Twins and Beyond. Acta Cryst A 2016, 72(1), 55-61.
https://doi.org/10.1107/S2053273315018197.

- Groupprops, The Group Properties Wiki : https://groupprops.subwiki.org
- Bilbao Crystallographic Server : http://www.cryst.ehu.es/

MERCI POUR VOTRE ATTENTION

Et un grand merci à Lise-Marie, Sophie, Corinne et Benoît
 JEAN ROUXEL

http://www.cnrs.fr

gECIPROCS

UNIVERSITÉ DE NANTES
http://www.univ-nantes.fr

