Twinning in very high temperatures
Ru-based shape memory alloys

- P. Vermaut, C. Declairieux, F. Prima and R. Portier
- A. Manzoni, A. Denquin,
- P. Ochin
AMFORTAS project:
Investigation on potential HTSMA for aeronautics applications

Requirements for High Temperature actuators:
- High Temperature Martensitic Transformation
- Good Shape Memory Effect
- Stability to thermal cycling and ageing
- Ability to produce work at high temperatures
- Good oxidation resistance
- ...

3 systems investigated:
- HfPd
- TiAu
- RuTa and RuNb
Goals:
- reduction of fuel consumption and pollution emission
- noise reduction
Martensitic transformation

- Solid –Solid phase transformation between Austenite (A) and Martensite (M)
 - Displacive dominated by shear (+shuffle, $\Delta V \approx 0$)
 - Nucleation and growth
 - One invariant plane strain
 - morphology controlled by deformation energy
- Can be thermoelastic ($\Delta V \approx 0$, SMA) or not ($\Delta V \neq 0$, steels).
1- Homogeneous deformation
Bain deformation

2- Lattice Invariant Shear

3- Rigid body Rotation θ

contradiction!

habit plane = plane of macroscopic shear
One-way Shape Memory Effect
Ru-based alloys

Very promising candidates for very High Temperature SMA:
- Very high Martensitic Transformation temperature
- Very good resistance to ageing
- Good shape memory effect

Complex microstructures and mechanical behavior
→ two successive Martensitic Transformations

Control of the Martensitic Transformation temperatures
→ chemical composition, out of stoichiometry
β austenite

B2

β′ martensite
Tetragonal

β″ martensite
Monoclinic

M Ru₅₀Nb₅₀
T Ru₄₅Nb₅₅
T Ru₄₃Nb₅₇

T Ru₄₃Ta₅₇
T Ru₄₅Ta₅₅
M Ru₅₀Ta₅₀
Transformation temperatures and stability

![Graphs showing transformation temperatures and stability](image)

Ru$_{50}$Nb$_{50}$
- 1 month at 690° C: [β” phase]
- 1 month at 850° C: [β’ phase]

Ru$_{45}$Nb$_{55}$
- Temperatures and transformation energy stables
- Stabilisation of β’ and β” phases

<table>
<thead>
<tr>
<th>°C</th>
<th>high temperature transformation β/β’</th>
<th>low temperature transformation β'/β”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ms’</td>
<td>Δ</td>
</tr>
<tr>
<td>Ru${40}$Nb${50}$</td>
<td>887.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Ru${48}$Nb${52}$</td>
<td>732.8</td>
<td>16.6</td>
</tr>
<tr>
<td>Ru${46}$Nb${54}$</td>
<td>574.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Ru${48}$Nb${55}$</td>
<td>492.0</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Control of the transformation temperatures by the chemical composition
Direct observation of the Shape Memory Effect

3 points bending test

- deformation of β’ at 830° C
- reverse transformation when heating up to 950° C
Shape memory effect decreases with Ru content

- Good shape recovery for equiatomic alloys but small for low Ru content alloys
- Control of transformation temperatures → 3rd element like Fe
Smaller contribution to the SME of the second martensitic transformation

- Two way Shape Memory effect? (Measure done at RT)
- Deformation is due to reorganization of β' variants instead of β''?
Microstructures Analysis

- SEM at room temperature
- Crystallographic approach
- TEM
- In-situ neutron diffraction
- EBSD
SEM

<table>
<thead>
<tr>
<th>Tetragonal</th>
<th>Monoclinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru_{43}Ta_{57}</td>
<td>Ru_{50}Ta_{50}</td>
</tr>
<tr>
<td>Ru_{45}Ta_{55}</td>
<td>Ru_{50}Nb_{50}</td>
</tr>
<tr>
<td>Ru_{43}Nb_{57}</td>
<td>Ru_{45}Nb_{55}</td>
</tr>
</tbody>
</table>

1, 2 or 3 laminates (polytwins) noted

A (Large)
B (Medium)
C (Small)
Microstructure of β’ martensite in Tetragonal alloys

twinned microstructures with 2 or 1 laminates depending the c/a ratio

Large A twins

Small C twins +
Large A twins

2 levels of laminates
$c/a = 1.058 \text{ @ RT}$

1 level of laminates
$c/a = 1.043 \text{ @ RT}$

Ru$_{43}$Nb$_{57}$

Ru$_{45}$Nb$_{55}$
Microstructure of β'' martensite in Monoclinic alloys

3 levels of laminates (twins)

A (L)

NEW B intermediate size (M)

C (S)

wavy translation boundaries
(no background difference)

from the β' phase

all the structural features of β' are inherited by β''
= all the interfaces
Crystallographic analysis: $\beta \rightarrow \beta'$ transformation

Group-subgroup relationship:

$$(a_\beta, b_\beta, c_\beta) \approx (a'_\beta, b'_\beta, c'_\beta)$$

48 m3m

4/m mm

48/16 = 3

4/mmm

16

3 orientation variants

Lost cubic mirrors:

$m(101)_\beta$

$m(10-1)_\beta$

$m(011)_\beta$

$m(01-1)_\beta$

Twinning planes

Mirror plane = twin plane

High atom density of the plane
β’ → β” transformation

β’ martensite
Tetragonal

P4/mmm \((a_{\beta’}, b_{\beta’}, c_{\beta’})\) → P2/m \((a_{\beta''}, b_{\beta''}, c_{\beta''})\)

β” martensite
Monoclinic

\[
a_{\beta''} = a_{\beta’} - b_{\beta’} + 2c_{\beta’}
\]
\[
b_{\beta''} = -a_{\beta’} - b_{\beta’}
\]
\[
c_{\beta''} = a_{\beta’} - b_{\beta’} - c_{\beta’}
\]

Group-subgroup relationship:

\([2]_{\beta’} // [110]_{\beta’}\)

\((m)_{\beta’} // m(110)_{\beta’}\)

- **4 orientation variants**
 - 4/m mm
 - 2/m
 - 16
 - 16/4 = 4

- **lost tetragonal mirrors**
 - \(m (010)_{\beta’} \rightarrow (-1-1-1)_{\beta”}\)
 - \(m (100)_{\beta’} \rightarrow (1-11)_{\beta”}\)
 - \(m (1-10)_{\beta’} \rightarrow (101)_{\beta”}\)
 - \(m (001)_{\beta’} \rightarrow (20-1)_{\beta”}\)

- **6 translation variants**
 - related by 5 lost translations
 - \([1-11]_{\beta’}\)
 - \([1-10]_{\beta’}\)
 - \([010]_{\beta’}\)
 - \([1-21]_{\beta’}\)
 - \([01-1]_{\beta’}\)
 - → translation boundaries

- **Vol_{\beta”} = 6 Vol_{\beta’}**

- **→ Twins**

Previous tetragonal unit cell
Shape Memory Effect \leftrightarrow unit cell deformation

\rightarrow lattice parameters versus temperature is needed

cubic \rightarrow tetragonal transformation: $c/a = \text{evolution marker}$

tetragonal \rightarrow monoclinic transformation: $c/a \text{ equivalent}$

In-situ neutron diffraction / $T^\circ \rightarrow a_{\beta''}, b_{\beta''}, c_{\beta''}, \beta \rightarrow \text{« evolution marker »}$

Laue-Langevin Institute Grenoble (France)
Unit cell deformation evolution with temperature

- **Release of the stress by the second MT**
- **New twinned self-accommodated µ-structure**
- **Large evolution of the unit cell in the β’ phase domain**
- **Stress is generated**
- **Self accommodated twinned µ-structure**

Ru₅₀Nb₅₀
Ru₅₀Ta₅₀
Ru₄₅Ta₅₅

β'' → β' transformation

β' → β transformation

cubique phase β

"c/a" evolution marker
TEM characterization of twins in tetragonal alloys

<table>
<thead>
<tr>
<th>alloy</th>
<th>shear amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru${45}$Ta${55}$</td>
<td>0.13</td>
</tr>
<tr>
<td>Ru${43}$Ta${57}$</td>
<td>0.09</td>
</tr>
<tr>
<td>Ru${45}$Nb${55}$</td>
<td>0.11</td>
</tr>
<tr>
<td>Ru${43}$Nb${57}$</td>
<td>0.08</td>
</tr>
</tbody>
</table>

A + C twins (variants)

all twins are \{101\}_T type

→ cubic mirrors lost

(101) Compound twin

K_1, K_2, η_1, η_2 rational

θ_{exp}

zone axis = [010]$_Q$

single laminates of A type twins is possible
EBSD observations in tetragonal alloy

- 3 variants of martensite
- **Ru$_{45}$Ta$_{55}$**
- A and C twins
- Zeiss DSM960 Saarbrücken
TEM characterization of twins in monoclinic alloys

Indices of \((3-10)\) plane in the \(\beta'\) tetragonal structure \(\rightarrow (101)\)

\[\rightarrow C \text{ twin of } \beta \rightarrow \beta' \]

old A and C twins in monoclinic alloys are **inherited** from \(\beta \rightarrow \beta'\) transformation

+ new B twins generated during \(\beta' \rightarrow \beta''\)
EBSD characterization of twins in monoclinic alloys

3 principal orientations coming from $\beta \rightarrow \beta'$ inherited tetragonal microstructure

$\beta \rightarrow \beta'$: C twin

$\beta' \rightarrow \beta''$: B twin

(100) mirrors of tetragonal variants lost during $\beta' \rightarrow \beta''$
EBSD analysis of the operation between variants: the chosen operation being a mirror and the interface being parallel to this mirror.

→ TWIN

\[\text{new} \]

C-TWIN: lost cubic mirror

\[\beta \rightarrow \beta' \]

B-TWIN: lost tetragonal mirrors

\[\beta' \rightarrow \beta'' \]

→ unexpected microstructure
Microstructural transformation mechanism

- normal conditions: all the variants are generated during the transformation they can be associated for the self accommodation transformation $\beta \rightarrow \beta'$

- special conditions for $\beta' \rightarrow \beta''$

normal conditions versus experimental evidence
$\beta' \rightarrow \beta''$ constrained transformation

- geometrically constrained: very small thickness (n 10 nm) of the C-twin domains
 only one β'' variant in thickness

- elastically constrained: increase of the elastic energy
 → oriented nucleation of β''
 same β'' variants in alternative corresponding β' twin domains of the laminate

- crystallographically constrained: A or (A + C) β' twins are inherited and must still be twin operations for β'' structure
 β'' variants in two successive β' twin domains are related by the C_{β} twin element, written in β'' referential
crystallographically constrained: the C-twin are inherited

the B-twin interface must be planar to prevent crystallographic incompatibilities

Elastically constrained:

- B twin $m(111)'': (010)'$ leaving (3-10)'' invariant

- C twin $m(3-10)'': (101)'

- C twin $m(3-10)'': (101)'

residual elastic stress field
The 2nd martensitic transformation is geometrically and crystallographically constrained.

Only one variant of β'' have to grow in the C-type twin domains without twinning (LIS).

A special match between β' and β'' lattices is needed.
Summary on Ru-based alloys

• Shape memory is effective at very high temperature
• Shape memory effect is larger for the $\beta \rightarrow \beta'$ transformation than for the $\beta' \rightarrow \beta''$ transformation
• Unit cell shape changes between both martensitic transformations
• An unexpected hierarchy of the twins is observed and suggests that the $\beta' \rightarrow \beta''$ transformation is constrained:
 ➢ crystallographically
 ➢ elastically
 ➢ geometrically