

The other face of Superflip

A. van der Lee

Institut Européen des Membranes Montpellier

For most people Superflip is a nice game

Let's look at the inner and other side of Superflip!

Contents

Superflip and all of that

- Superflip is more than a black box
- The Superflip cards
- Applications
 - Forcing Superflip to just one spacegroup
 - Comparison of crystal structures
 - Recovering of the crystal symmetry of DFT structures
 - ► Fourier applications → making nice electron density maps
 - Exercises

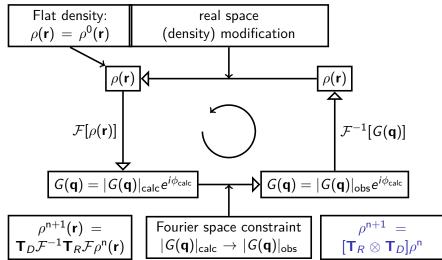
L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40 786.

Contents

Superflip and all of that

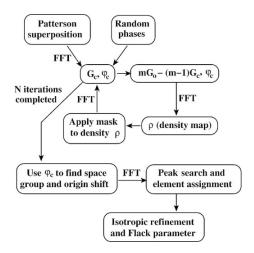
- Superflip is more than a black box
- The Superflip cards
- Applications
 - Forcing Superflip to just one spacegroup
 - Comparison of crystal structures
 - Recovering of the crystal symmetry of DFT structures
 - Fourier applications \rightarrow making nice electron density maps
 - Exercises

L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, **40** 786.


Introduction

Superflip is more than a black box!

- The default parameters (nearly) always work. A. van der Lee: Charge flipping for routine structure solution, J. Appl. Cryst. 46, 1306-1315 (2013)
- Symmetry recovery. L. Palatinus and A. van der Lee: Symmetry determination following structure solution in P1, J. Appl. Cryst. 41, 975-984 (2008)
- ► → p. 983: What we suggest is a change of paradigm: if the structure solution in P1 is equally feasible or even easier than the solution in the correct space group, then it is natural that the determination of the symmetry follows the structure solution rather than preceding it, removing thus one source of ambiguity in the structure-solution process
- → G. M. Sheldrick: SHELXT Integrated space-group and crystal-structure determination, Acta Cryst. A71, 3-8 (2015)


A simple flow diagram for Superflip

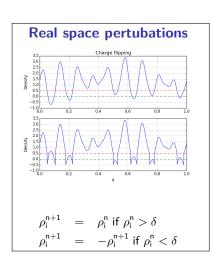
Eq. 1 in *Macromolecular structure solution by charge flipping*, C. Dumas & A. van der Lee, Acta Cryst. D64, 864-873 (2008)

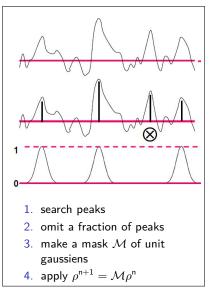
A simple flow diagram for Shelxt

Keywords: Patterson superposition; direct methods (??); dual-space recycling; space-group determination; element assignment. AvdL

Superflip & Shelxt - differences and similarities

Similarities


- Both are iterative dual-space methods
- Both apply *constraints* and *perturbations* in both real and reciprocal space
- Both have a very relaxed notion of atomicity
- No direct methods


Differences

- Real space perturbation
 - Shelxt \rightarrow random omit maps
 - Superflip \rightarrow charge flipping
- Reciprocal space constraint
 - Shelxt \rightarrow complex replacement of $|G_{cal}|$ by $|G_{obs}|$
 - Superflip \rightarrow simple replacement of $|G_{cal}|$ by $|G_{obs}|$

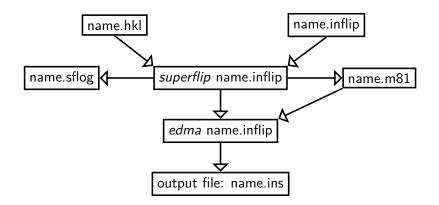
Superflip & Shelxt - differences and similarities

Superflip & Shelxt - differences and similarities

Reciprocal space constraints

Superflip Use G_{obs} , normalized F_{obs} $|G^{n+1}| = |G_{\rm obs}|$ $\phi^{n+1} = \phi_{cal}$ Weak reflections pertubation: $\phi^{n+1} = \phi_{cal} + \pi/2$ for weakratio% of the weakest reflections

Free lunch-like algorithm

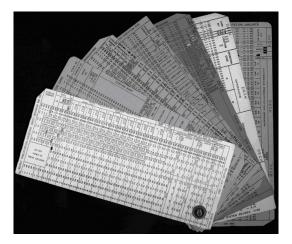

Shelxt Use $G_{obs} = E_{obs}^q F_{obs}^{1-q}$ $|G^{n+1}| = m|G_{obs}| - (m-1)|G_{cal}|$ $\phi^{n+1} = \phi_{cal}$

m=3 and q=0.5 can be changed

Free lunch algorithm

Flow diagram Superflip

Contents


Superflip and all of that

- Superflip is more than a black box
- The Superflip cards
- Applications
 - Forcing Superflip to just one spacegroup
 - Comparison of crystal structures
 - Recovering of the crystal symmetry of DFT structures
 - Fourier applications \rightarrow making nice electron density maps
 - Exercises

L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, **40** 786.

The Superflip 'cards'

The Superflip cards - I

```
# Main keywords
title exp_1614 in C2/c
perform CF
                                                  #or /lde/general/fourier/symmetry
outputfile sflip.m81 sflip.m80 sflip_sym.ins
                                                  #or xplor/ccp4
outputformat jana
dataformat intensity
dimension 3
voxel AUTO
cell 13.158 8.677 7.496 90.000 95.981 90.000
                                                  #Laue group used for symmetry determination
spacegroup C2/c
centers
0.000000000 0.00000000 0.00000000
0.500000000 0.500000000 0.000000000
endcenters
symmetry
                                                  #can be shely notation
x1 x2 x3
-x1 - x2 - x3
x1 - x2 + x3 + 1/2
-x1 + x2 - x3 + 1/2
endsymmetry
```

C

Generalized iterative algorithm

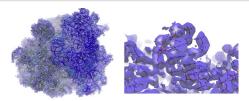
'perform general'

$$\rho^{n+1} = [(1 - \beta_1 - \beta_2)\mathbf{I} + \beta_1 \mathbf{T}_R^{\gamma_{R1}} \otimes \mathbf{T}_D^{\gamma_{D1}} + \beta_2 \mathbf{T}_D^{\gamma_{D2}} \otimes \mathbf{T}_R^{\gamma_{R2}}]\rho^n$$
avec
$$\mathbf{T}^{\gamma} = (1 + \gamma)\mathbf{P} - \gamma\mathbf{I}$$
harge flipping:
$$\beta_1 = 1; \ \beta_2 = 0; \ \gamma_{R1} = 0; \ \gamma_{D1} = 1.$$

$$\rho_{n+1} = [\mathbf{T}_R \otimes \mathbf{T}_D]\rho_n$$

$$\mathbf{T}_D^1 = 2\mathbf{P}_D - \mathbf{I}$$

 $\mathbf{P}_D \to \rho_i^{n+1} = \rho_i^n \text{ if } \rho_i^n > \delta \quad \text{and} \quad \rho_i^{n+1} = 0 \text{ if } \rho_i^n < \delta$


Low density elimination: $\beta_1 = 1$; $\beta_2 = 0$; $\gamma_{R1} = 0$; $\gamma_{D1} = 0$.

Use of other iterative algorithms?

Small versus large assemblies

- When the standard algorithm does not work
- For extremely large assemblies it has been shown that AAR* and FDF algorithms perform better - the XFEL context!

Lensless coherent imaging of proteins and supramolecular assemblies: Efficient phase retrieval by the charge flipping algorithm, C. Dumas, A. van der Lee, L. Palatinus, J. Struct. Biol. **182**, 10–116 (2013) *AAR = Average Alternating Reflections → perform general 0.5 1.0 1.0 0.0 0.0 0.0

The Superflip cards - II

Keywords for charge flipping delta AUTO weakratio 0.200 Biso 0.000 randomseed AUTO normalize local nresshells 100 missing float 0.4

searchsymmetry average
derivesymmetry use
factor]

fastftt yes

dataformat shelx
fbegin name.hkl
endf
End of keywords for charge flipping

#or value sigma, e.g. '1.3 sigma'

#wilson/local/atoms/no (default no)

#handling missing reflections

#no/shift
#yes/no/use [limit agreement

#shelx/amplitude/intensity

The value of δ depends on the scale factor

$$\begin{array}{rcl} \rho_{\mathsf{n}+1}^{\mathsf{i}} &=& \rho_{\mathsf{n}}^{\mathsf{i}} \text{ if } \rho_{\mathsf{n}}^{\mathsf{i}} > \delta \\ \rho_{\mathsf{n}+1}^{\mathsf{i}} &=& -\rho_{\mathsf{n}+1}^{\mathsf{i}} \text{ if } \rho_{\mathsf{n}}^{\mathsf{i}} < \delta \end{array}$$

Use the standard deviation (square root of the variance) σ of the electron density instead:

$$\sigma = \sqrt{<\rho^{\mathsf{i}} - \bar{\rho}>} = (1/V^2) \sum_{\mathbf{q}\neq \mathbf{0}} |F_{\mathsf{obs}}(\mathbf{q})|^2 \quad \mathsf{Parseval's theorem!}$$

Then we can write:

$$\begin{array}{lll} \rho_{\mathsf{n}+1}^{\mathsf{i}} &=& \rho_{\mathsf{n}}^{\mathsf{i}} \text{ if } \rho_{\mathsf{n}}^{\mathsf{i}} > k_{\mathsf{ed}}\sigma \\ \rho_{\mathsf{n}+1}^{\mathsf{i}} &=& -\rho_{\mathsf{n}+1}^{\mathsf{i}} \text{ if } \rho_{\mathsf{n}}^{\mathsf{i}} < k_{\mathsf{ed}}\sigma \end{array}$$

Handling of symmetry in Superflip

The cards

- symmetry endsymmetry → is used for averaging the reflections in the input file; reflections are then expanded in P1
- ► searchsymmetry no/shift/average → given symmetry elements are searched for and eventually the density is shifted and/or averaged accordingly
- ► derivesymmetry yes/no/use → symmetry compatible with cell metrics and centering can be determined and applied or not

The symmetry agreement factor ϕ_{sym}

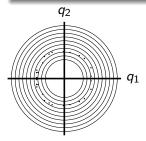
$$\phi_{\text{sym}}(S) = C \cdot \frac{\sum_{\mathbf{h}} |F_{\mathbf{h}}F_{\mathbf{h}\mathbf{R}}| \Delta_{\mathbf{h},S}^{2}}{\sum_{\mathbf{h}} |F_{\mathbf{h}}F_{\mathbf{h}\mathbf{R}}|}$$

avec $\Delta_{\mathbf{h},S} = |\varphi(\mathbf{h}) - \varphi(\mathbf{h}\mathbf{R}) - 2\pi\mathbf{h}\cdot\mathbf{\tau} + 2\pi\mathbf{n}|$

Definition

- if $\Phi_{sym}(S) = 0.00$ then $\rho(\mathbf{r})$ is perfectly symmetrical with respect to S
- ▶ if $\Phi_{sym}(S) = 1.00$ then $\rho(\mathbf{r})$ is completely random with respect to S

Example (sflog-file)


Symmetry operations				Symmetry operation agreement factor			
c(0,1,0): ×1	-x2	1/2+x3	3 0.193 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx				
2(0,1,0): -×1	×2	-×3	2.022	*****			
-1: -×1	-x2	-×3	2.200	*****			
m(0,1,0): ×1	-x2	×3	68.937	****			
Space group de 	2/c -C 2yc 3312226 ors: 000 000 tions: x2 1/2 x3	50n0321 (0,0		erations:			

Normalizing structure factors - I

No, Wilson, atoms, or local?

- No \rightarrow slower convergence (default)
- ▶ Wilson \rightarrow in contradiction with *ab initio* character of charge flipping!
- \blacktriangleright atoms \rightarrow wilson, but only for atoms of composition
- local \rightarrow gives in general the best results (Karle approach)

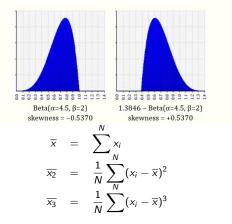
$$E_{\text{obs},i} = \frac{|F_{\text{obs},i}|/\sqrt{\epsilon_i}}{\sqrt{\sum^{N}[|F_{\text{obs},i}|^2/N\epsilon_i]}}$$

N is the number of reflections in resolution shell; the number of reflection shells is determined by the Superflip keyword nresshells.

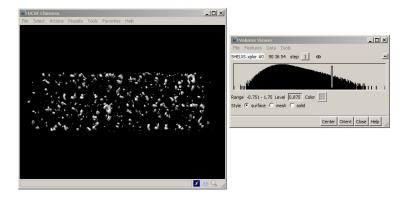
Normalizing structure factors - II

Running Superflip

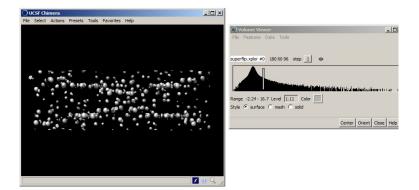
What do I see when the program is running?


urrent de	lta =	0.02598	(k ed =	1 07000)				
10 R:	50.862	Charge:	62.94	Peaks:	1.00			
otal/flip	ped rat	io = 1.	018. Incre	asing del				
urrent de	lta =	0.02780	(k ed =	1.14498)				
10 R:	54.595	Charge:	55.89	Peaks:	1.00			
otal/flin	ped rat	io - 0.	821.					
riterion	for del	ta fulfill	ed, contin	uing iter.	ation.			
20 R:	54.846	Charge:	52.92	Peaks:		Score:		
30 R:	55.084	Charge :	51.41	Peaks :	1.29	Score:		
40 R:	55.043	Charge :	50.19	Peaks:		Score:		
	57.851	Charge:	49.59	Peaks:	1.52	Score:		
60 R:	58.769	Charge:	49.11	Peaks:	1.69	Score:		
70 R:	57.854	Charge :	46.46		2.20	Score:		
80 R:	56.594		40.00			Score:		
90 R:	55.507	Charge:	35.92	Peaks:	4.91	Score:		
100 B:	55.476	Charge :	34.62	Peaks :	4.91	Score:		
162 R:						Score:	6.71	
alculatio	n succe	ssfully con	nverged af	ter 162	cycles			
	1 6	noise supp		11				
5 C yc	37.557	Charge:	ression ro 0.00	Peaks:	9.76			

The flipped charge is $\sum |\rho_i|$ summed over all pixels for which $\sum |\rho_i| < \delta$ Peaks = peakiness = skewness of the histogram of the density = $\frac{1}{A}\sum_i (\rho_i - \bar{\rho})^3$ (third moment of data set)

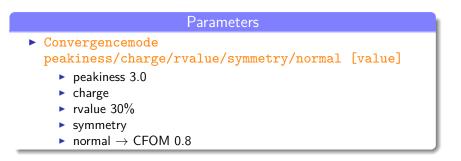

Electron density histograms

A density histogram is a probability distribution of values of the electron density sampled at regular intervals (grid points) throughout the 3-dimensional map


Electron density histograms - 'bad'

peaks pprox 1

Electron density histograms - 'good'



peaks pprox 6

Detection of convergence & solution

Superflip

Detection of convergence & solution

Shelxt

Parameters

- CC,R(weak),CHEM
 - CC \rightarrow correlation coefficient between $G_{\rm obs}$ and $G_{\rm cal}$ (100%)
 - R(weak) = $\langle E^2 \rangle$ for 10% smallest E_{cal} : has to be close to 0.0
 - CHEM \rightarrow fraction of angles for peak-peak distances between 1.1 and 1.8 Å lying between 95°and 135°(not for inorganics)
 - CFOM = 0.01CC R(weak)
- $\alpha \rightarrow$ symmetry agreement factor
- $R_1 \rightarrow$ after isotropic refinement

The 'cards' of Superflip - III (EDMA)

EDMA-specific keywords inputfile sflip.m81 outputbase sflip export sflip.ins numberofatoms 0 composition C H N O maxima all fullcell no scale fractional plimit 1.5 sigma centerofcharge yes chlimit 0.2500

```
#cif, ins, m40
#guess/composition; 0 = guess
#with composition C2 H5 N2 O2
#none/all/atoms
```

#real number [absolute/relative/sigma] #useful in case of anharmonicity etc. #only pixels $> \rho_{max}$ are used

End of EDMA-specific keywords

L. Palatinus, S. J. Prathapa, S. van Smaalen, EDMA: a computer program for topological analysis of discrete electron densities. J. Appl. Cryst. 2012, 45, 575-580

—The input cards

EDMA - analysis of electron density map

The 'cards' of Superflip - IV (EDMA)

Input file EDMA

- If derivesymmetry use then new symmetry ···· endsymmetry cards are needed!
- cell card also needed
- critical points can be determined with criticalpoints keyword

Contents

Superflip and all of that

- Superflip is more than a black box
- The Superflip cards
- Applications
 - Forcing Superflip to just one spacegroup
 - Comparison of crystal structures
 - Recovering of the crystal symmetry of DFT structures
 - \blacktriangleright Fourier applications \rightarrow making nice electron density maps
 - Exercises

L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, **40** 786. Advanced applications

Forcing Superflip to analyze only one spacegroup

Forcing Superflip to analyze only one spacegroup

Why and how ?

- ► Why?
 - Organometallic structures with heavy element on special position often confuse Superflip
 - Moderately twinned structures often confuse Superflip (example follows)
- ► How?
 - \blacktriangleright Superflip \rightarrow search symmetry average & derive symmetry no
 - Shelxt \rightarrow shelxt $-s"P2(1)_c"$

Comparing crystal structures

'The DFT calculations have validated the crystal structure \cdots "

- ► DFT crystal structures (not gas-phase molecules!) have been optimized in *P*1
- Need to go back to original space group symmetry
- Need for comparison with the structure determined with X-ray diffraction

Problem is also recurrent in ab initio crystal structure predication: how to remove duplicates?

Solutions - Bilbao's COMPSTRU

http://www.cryst.ehu.es/cryst/compstru.html

÷	www.cryst.ehu.es/cryst/compstru.html	C	Q struccomp bilbao

Comparison of crystal structures of the same symmetry

Compare Structures

Often a quantitative comparison of two structural models of the same phase, coming from different sources, is difficult because the models, although postulating the same space group symmetry, are described using different setuits of atoms in the asymmetrix unit, or different equivalent choices of origin or cell orientations. The program COMPSTRU compares two structure descriptions of the same compound characterizing the similarity of the same compound characterizing the similarity of the some compound characterizing the similarity descriptors.

First, the program transforms the Structure 2 to the most similar configuration of Structure 1. The difference between the two models is quantified by evaluation of (i) the global distortion decomposed into a spontaneous strain (datice deformation) and adomic displacement field representing the distances between the pared atoms of the two structures; (ii) the measure of similarity as introduced by Bergerhoff (Bergerhoff *et al.*, 1990). [Moro...]

NOTE: The program only accepts, as input data, structures described in a standard/default setting of the space group. If the original structure is described with respect to an ITA setting, the program SETSTRUC can be used to transform it to the standard setting. In the case of more arbitrary non-conventional settings, the old TRANS TRUC can be of some help, if the transformation to the

[in CIF format]			. opno		en file	ename is	s preterentia	al]	
	15			9,420					
	7	000 3	0.091	9.420	90.0	105	5 90.0		
	Pb	1	4e	0.0	000	0 2014	0.2500		
	Pb	2	81				0.3520		
	P	1	81				0.4470		
	0	1	81				0.3920		
active sectors and	ő	2	8f			0.464			
Structure 1		3	8f				0.6120		
	0	- 4	81				0.4200		
Structure Data	-			ucun fichie n for a giv			i. s preferentia	al]	
	-							al]	
Data	HIN	F: [The	e optio	n for a giv	en file	ename is			
Data	HIN	F: [The	e optio	n for a giv	en file 90 -	ename is	s preferentia		
Data	HIN 15 13. 7	F: [Thi 967 - 5	e optio 5.560 4e	n for a giv 40.778	90.	ename is	preferentia		
Data	HIN 15 13. 7 Pb	967 3	e optio 5.560 4e 8f	n for a give 40.778 0.0000	90. 0.0	ename is	.713 90.0		
Data	HIN 15 13. 7 Pb Pb	967 3	e optio 5.560 4e 8f 8f	n for a giv 40.778 0.0000 0.0000	90. 0.0 0.0	0 166	713 90.0		
Data [in CIF format]	HIN 15 13. 7 Pb Pb P 0 0	F: [The 967 : 1 2 1 2 2	4e 8f 8f 8f	40.778 40.778 0.0000 0.0000 0.0000 0.0000 0.2715	90. 90. 0.0 0.0 0.0	0 166	713 90.0 0.7500 0.8563 0.9511 0.9145 0.8885		
Data [in CIF format]	HIN 15 13. 7 Pb Pb P 0 0	F: [The 967 : 1 2 1 2 3	4e 8f 8f 8f 8f	40.778 40.778 0.0000 0.0000 0.0000 0.2715 0.9570	90. 90. 0.0 0.0 0.0	0 166	713 90.0 0.7500 0.8563 0.9511 0.9145 0.8885 0.1170		
Data [in CIF format]	HIN 15 13. 7 Pb Pb P 0 0	F: [The 967 : 1 2 1 2 2	4e 8f 8f 8f 8f	40.778 40.778 0.0000 0.0000 0.0000 0.0000 0.2715	90. 90. 0.0 0.0 0.0 0.0	0 166	713 90.0 0.7500 0.8563 0.9511 0.9145 0.8885		
Data	HIN 15 13. 7 Pb Pb P 0 0	F: [The 967 : 1 2 1 2 3	4e 8f 8f 8f 8f	40.778 40.778 0.0000 0.0000 0.0000 0.2715 0.9570	90. 90. 0.0 0.0 0.0 0.0	0 166	713 90.0 0.7500 0.8563 0.9511 0.9145 0.8885 0.1170		

Solutions: Bilbao's COMPSTRU - II

http://www.cryst.ehu.es/cryst/compstru.html

3		-	At	omic Dis	placemen	its
	WP	Atom	ux	uy	uz	u
4a	(x,y,z)	C1	0.0087	0.0303	0.0042	0.3295
4a	(x,y,z)	C2	-0.0263	-0.0059	0.0012	0.3474
4a	(x,y,z)	C3	-0.0308	0.0083	-0.0024	0.4112
4a	(x,y,z)	C4	-0.0001	0.0510	-0.0046	0.5064
4a	(x,y,z)	C5	0.0035	0.0432	-0.0022	0.4254
4a	(x,y,z)	C6	0.0028	0.0372	-0.0001	0.3636
4a	(x,y,z)	C 7	-0.0031	0.0314	0.0015	0.3097
4a	(x,y,z)	C8	0.0101	-0.0313	0.0024	0.3355
4a	(x.v.z)	C9	0.0213	-0.0355	0.0019	0.4442

Solutions: Bilbao's COMPSTRU - III

http://www.cryst.ehu.es/cryst/compstru.html

Evaluation of the structure similarity

S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0085	1.7441	0.4059	0.106

- · Lattice and atomic position criteria:
 - The <u>degree of lattice distortion (S)</u> is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3). For the given two structures, the <u>degree of lattice distortion (S)</u> is 0.0085.
 - \circ The maximum distance (d_{max}) shows the maximal displacement between the atomic positions of the paired atoms. The maximum distance (d_{max}) in this case is: 1.7441 Å
- The arithmetic mean (d_{av}) of the distance. In this case, the arithmetic mean (d_{av}) is 0.4059 Å
- The <u>measure of similarity (A)</u> (Bergerhoff et al., 1998) is a function of the differences in atomic positions (weighted by the multiplicities of the sites) and the ratios of the corresponding lattice parameters of the structures. The measure of similarity (A) calculated for this case is 0.106.

Advanced applications

Atomic structure comparison

Solutions: Mercury's "Structure Overlay" option - I

01/jctcriear/sylvan/afrifienia/measurements_metabl//comp10001444_blae_and_reductumyx (#212121) - CS9 Estergine		101
Te Edit Selector Deplay Calculata CSD-Community CSD-System CSD-Haterials CSD-Decovery CSD-Python API Help	Wellspie Structures	21×
ndang Madari Ped Atomo 🔄 🖄 Disa Processional 🧞 😥 🔯 🔯 🔽	Actions, e.g. packing, will be applied to Active structure(s) only Rotation to around	
(style (microwe _ Colour (yr Sevent) Hanage States //w/k _) Jatan selectana (Rotation is around Glabal ratation centre C Local rotation centre	
	Loss to much the search the search tow T	
S A STO		
splay Codons	σ×	u
Deplay Doplay		<< >>>
Pading	L'AUTON	P Tee Vev
Asymetric Unit Head Default definition Hone Default definition Hone Default definition		P Multiple Structures
Rado cerbe	E Starto	Stuctures
Rate		Destanting Fax

Advanced applications

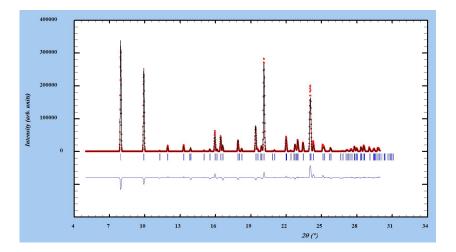
Atomic structure comparison

Solutions: Mercury's "Structure Overlay" option - II

71/cstrieur/sylvan/ad-Hembs/incassements_mai0117/comp1006-1448, blac_and_redpert.myx(P212121) - C50-Enterprise				
le Edit Selectori Dialari Cabulare CBD-Community CBD-Hotemalis CBD-Deponsery CBD-Pythini API Help	😽 Haltiple Structures			71
Polang Made: [Pol Atoms 🖉 Dian Hassamments] 👌 🖉 🕞 🔽 Brave Labels for [AT storm 🖉 etch [Atom: Label] 🛫	Actions, e.g. padeng, will be appled	d to Active structure(s) only		
Száloz: [by Benerz] 🗶 Manage Száloz: [by Benerz] 🗶 Manage Száloz: [by Benerz]	Global rateton centre		rotation centres	
Γ Annuale [Default week]				
	Celete All P	Nable Active 1		
				-
		9 9 9		
	2 Deele 19A		. 100	
	Move the structure that is neare	at the mouse cursor		
	Structure Overlay	9	×	
	Select pairs of atoms in any two of			
	Overlay			
	Atom1 Atom2 Di	rteros	3	
	1 Delete CLD C1 0.1			
	2 Delete C12 C2 0.1	09		
	3 Delete C11 C3 0.0			
	19 0000 CT CO 000	2		
	Ciel Ciel			
		~	1.	
• •				
splay Cations			ø×	« »
Entry I Departure	ens E besthoue			P Tes liev
Standard (Jun of Ver Hall)	pens ⊏ beomtioue es ⊏ Z-Cilopino			
	F Steep			Multiple Structure
Pondet				Shctres
				Structure Nov.

Powder fingerprint structure comparison

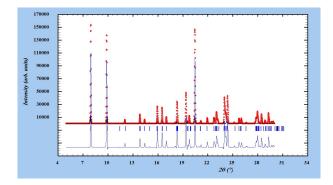
Solutions: Powder diffractogram comparison - I


Recipe

- Manual alignment of cell parameters from DFT and X-ray structure
- Calculate X-ray diffractogram for experimental structure
- Calculate X-ray diffractogram for DFT structure
- Refine scale factor and compare

Powder fingerprint structure comparison

Solutions: Powder diffractogram comparison - II



Advanced applications

Powder fingerprint structure comparison

Solutions: Powder diffractogram comparison - III


DFT cell parameters: 12.786199 22.237999 9.808199 90.0 90.0 90.0
 X-ray cell parameters: 12.826199 22.337999 9.728199 90.0 90.0 90.0

A. Duarte Rodrigues, K. Fahsi, X. Dumail, N. Masquelez, A. van der Lee, S. Mallet-Ladeira, R. Sibille, J.-S. Filhol, S. G. Dutremez, Chem. Eur. J., accepted (2017).

Powder fingerprint structure comparison

Solutions: Powder diffractogram comparison - IV

Advanced applications

Structure comparison by crystallographic phases

Solutions: Superflip - referencefile & modelfile

- ► referencefile: Superflip aligns (≈ compares) the charge flipping density with a reference density (format .m81, .cif, .xplor)
 - can be used to fix the location of the symmetry operations there where you want them to be
 - can be used to diminish noise on successive CF runs (repeatmode n)
 - can be used to compare two structures in conjunction with perform symmetry and modelfile name
- modelfile:
 - can be used for setting starting phases with perform cf
 - can be used for determining the symmetry in a density with perform symmetry

Structure comparison by crystallographic phases

The Minimum Superposition Method revisited

Shelxt & Superflip

- Shelxs
 - based on the Patterson superposition minimum function (Buerger, 1959; Sheldrick, 1991)
 - instructions PATT (instead of TREF) & VECT
 - default starting map in Shelxt
- Superflip
 - use the card modelfile superposition 0.05

How does it work? [from the Shelxs manual]

The Patterson function is calculated twice, displaced from the origin by +U and -U, where U is the superposition vector. At each grid point the lower of the two values is taken, and the resulting superposition minimum function is interpolated to find the peak positions. This is a much cleaner map than the original Patterson and contains only 2N (or 4N etc. if the superposition vector was multiple) peaks rather than $N^{\tilde{s}}$. The superposition map should ideally consist of one image of the structure and its inverse; it has an effective space group of $P\bar{1}$ (or $C\bar{1}$ for a centered lattice etc).

Solutions: perform symmetry I

Or: bringing back DFT structures to their actual spacegroup symmetry

```
title alpha235K symmetrized
perform symmetry
outputfile sflip.m81 sflip_edma.ins
outputformat jana
modelfile alpha235K.cif
dimension 3
voxel AUTO
cell 7.9191 5.8957 49.6875 90.0 95.9899 90.00
#DFT cell 7.9191 5.8957 49.6875 90.0553 95.9899 89.9097
spacegroup P 1
centers
0.500000000 0.500000000 0.500000000
endcenters
symmetry
x, y, z
endsymmetry
searchsymmetry average
derivesymmetry use
```

The other face of Superflip

Advanced applications

Structure comparison by crystallographic phases

Solutions: perform symmetry II

```
# begin EDMA
inputfile sflip.m81
outputbase sflip
export alpha235K_symmetrized.ins
numberofatoms 0
composition C 0 S
maxima all
fullcell no
scale fractional
plimit 1.5 sigma
centerofcharge yes
chlimit 0.2500
# End of EDMA-specific keywords
```

Advanced applications

Avd

Structure comparison by crystallographic phases

Comparing two structures - I

```
#Compare structures name1 and name2
#______
perform symmetry
title compare two structures in Pna21
# Basic crystallographic information
cell 10.9732 12.7636 20.7212 90.0000 90.0000 90.0000
symmetry
x,y,z
-x.-v.0.5+z
1/2-x, 1/2+y, 1/2+z
1/2+x, 1/2-y, z
endsymmetry
centers
0.00 0.00 0.00
endcenters
voxel 24 32 48
# Output density map and compare structures
searchsymmetry average
derivesymmetry use
modelfile name2.m81
referencefile name1.cif
outputfile out.m81
```

Advanced applications

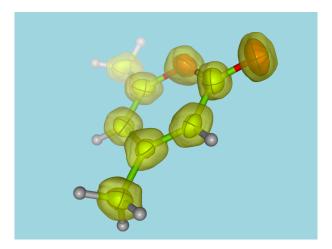
Structure comparison by crystallographic phases

Comparing two structures - II

checking .sflog file

.

The resulting density will be shifted and averaged according to the symmetry operations given above.


Following symmetry operations will be used to locate the origin of symmetry: $3 \ 4$

The resulting density will be shifted so that is matches the reference density.

The density was aligned with the reference file, agreement 14.86%. Shift: 0.00000 0.00000 0.18833

.

Problems

- SHELXL and CRYSTALS do not output electron density maps
- JANA does output the electron density map, but in the 'wrong' format
- Using external programs, e.g. VMD or VESTA, one is faced with the 'alignment problem'
- Solution \rightarrow get it all-right with SUPERFLIP

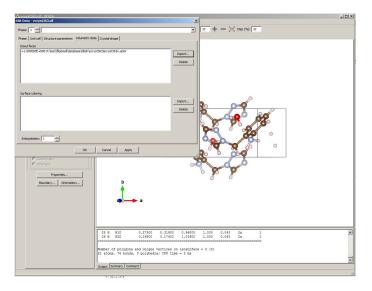
perform fourier and referencefile name are your friends!


```
# Fourier transformation of structure factors
#-----
title Fourier transform of Crystals phased structure factors
perform fourier
# Basic crystallographic information
cell 13.6203 13.0436 28.5132 90.00 94.708 90.00
symmetry
хуz
-x -y -z
-x v+1/2 -z+1/2
x -v+1/2 z+1/2
endsymmetry
# Keywords influencing the CF algorithm
voxel AUTO
terminal no
# Output density map and phased hkl reflections
searchsymmetry average
derivesymmetry yes
outputfile yml47b.xplor
referencefile yml47b.cif
# Input reflections and normalization
dataformat amplitude phase
                                                phase is expressed as a multiple of 2\pi
#dataformat a b
                                                real and imginary part of the structure factor
fbegin fort.12
endf
```

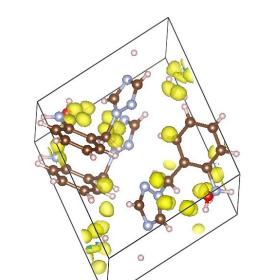
From SHELXL or CRYSTALS to VESTA

SHELXL

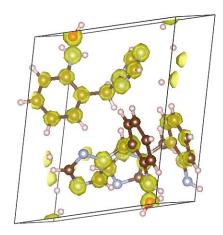
- ▶ LIST 3 \rightarrow Write h,k,l, Fo, sigma(Fo), A(real) and B(imag) in FORMAT(314,4F8.2)
- ▶ LIST 5 \rightarrow Write h,k,l, Fo, Fc, and phase in degrees in FORMAT(314,2F10.2,F7.2)
- if LIST5 convert phase to multiples of 2π
- CRYSTALS (phase is in radians)
 - type on the command line: \punch 6 C (this creates bfile.pch)
 - convert phase to multiples of 2π
 - read(10,'(3I4, F10.2, F8.2, F10.2, F8.4, G12.5, F10.5)')IH, IK, IL,FO, SIGMAFO,FC,PHASE,SQRTW,CORRECT
- ▶ JANA \rightarrow run Fourier (F(obs)) in order to obtain name.m81



Secryst363.cdf-VESTA File Edit Wew Objects Utilities Help		-02
	◆ → し 少 Step (%: 45.0 全 単 400 m) Step (xx): 100 + → 次(Step (%): 100 ■ ■ σχμ353.07 ■ σχμ353.07 ■	
Provide and Page of Page	$\frac{28 \text{ H B2}}{1482} \frac{0.27000}{0.11460} \frac{0.3900}{0.14800} \frac{0.4900}{1.000} \frac{1.000}{0.010} \frac{0.010}{0.010} \frac{28}{1.000} \frac{1}{1.000} \frac{1}{0.010} $	



eryst363.cd - VESTA Edit Wein Objects Utilities Heij Linder Cel+2 Resto Cel+Shift+2	t \$ ← → t \$ 500 (%) 450 t \$ + + + (0, 500 (%) 10	.iDi.
Aldoba Celei Andream Celei Andream Celei Constanting Celei Constanting Celei Constanting Constanting	The second secon	
Roportes Boundary Dinemati	Description Description 0.11000 0.44400 1.500 0.644 2a 1 25 H H2D 0.12500 0.11000 0.44400 1.500 0.644 2a 1 Index of polynear and antiger my cores on instructions - 5 (0) 0.011	2
	Double Sommery Connext	2



Tips & tricks

SHELXT

E.g. shelxt -s"P2(1)_c name

Change command-line options

▶ -q change q in
$$G_{\rm obs} = E_{\rm obs}^q F_{\rm obs}^{1-q}$$

- ▶ *q* = 0.5
- make q smaller for structures with heavy atoms
- make q larger for large equal atom structures
- -m number of P1 dual space iterations (default 100)
- -s fix solutions to one space group

▶ -aX search all spacegroups within Laue group with $\alpha < X$

Tips & tricks

Superflip

Change cards

- ► repeatmode n/nosuccess [sumgood] → first good density is used as referencefile to which subsequent good densities are aligned
- maxcycles 100000
- normalize local
- ► missing bound [resolution_limit] → default resolution_limit 1.25; could be an idea to extend reflections beyond the experimental resolution (free lunch)
- histogram matching
- ► low resolution data: AAR scheme → perform general 0.5 1.0 1.0 0.0 0.0 0.0

CRYSCALC

Superflip & Shelx

CRYSCALc

(CRYSTALLOGRAPHIC CALCULATIONS)

makes the crystallographer life easier !

Ver. Nov. 2017

-----*

T. Roisnel

CDIFX/PRATS/ISCR UMR6226 CNRS-Univ. Rennes 1, France

[with courtesy of JRC and JGP for CFML]

contact : thierry.roisnel@univ-rennes1.fr
Web site : www.cdifx.univ-rennes1.fr/cryscalc

CFGui

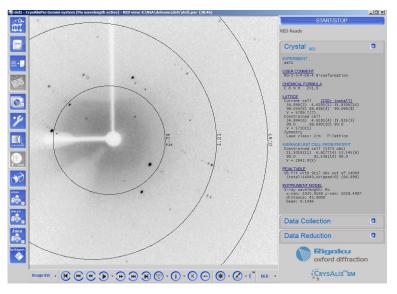
Superflip

Charge Flipping Gui	
Small Molecules Proteins	100 million (100 million)
Quit	

Input file:	1	Browse	Edit ins
No of trials:	1	Normalize: Force symmetry	© yes C m
k_ed:	auto	Superposition:	
Weak:	0.20	Edmacontinue:	C yes @ m
Maximum cyck	10000	Pure P1 mode:	
		Clean up:	C yes C n

Exercises for Superflip & Shelxt

- 1. Resolution of a twinned molecular crystal structure with Superflip & Shelxt (LB05)
- 2. Resolution of a twinned molecular crystal structure with Superflip & Shelxt (HR186)
- Structure solution of a very small protein with Superflip & Shelxt (1a7y)
- Structure solution of a small protein with Superflip & Shelxt (2anv)
- 5. DFT structures perform symmetry (alpha295K, beta235K)
- 6. Superposition of electron density maps on cif structures *perform fourier* (ecryst35)



del1

Crystals - crfilev2.dsc		_
	Terfiniament: Analyse Results Graphics Appearance Tools Help	
🖹 🗙 🗏 💥 🕜 🍞 😭 🏀		
700.0301 (x 73. 0.0203 (
74 -0.0082 f		
750.0147 (
80. 0.0176 (86. 0.0159 (7	
870.0062 (880.0232 (
890.0058 (
900.0212 (95. 0.0260 (
970.0056 (
980.0023 (990.0159 (
1010.0174 (
1040.0121 (1050.0060 (
1060.0071 (a for the second s	
1070.0003 (109. 0.0344 (
1100.0252 (
113 0.0133 f		
1140.0066 (1150.0274 (
118 -0.0151 (
119. 0.0124 (1210.0151 (
1220.0248 (
1230.0101 (125. 0.0245 (
1260.0265 (
1350.0188 (136. 0.0036 [
136. 0.0036 (The R-factor is 13.6		
old R-factor was 13.5	4 7 4	
and the state		
34.8732 alpha 90.000	Id T S x y z occ Type Ueg Spare Re Ass G	_
34.8732 alpha 90.000 4.6204 beta 98.675	Id T S x y z Docc Type Usq Spare Re Ass G 1 0 1 0.895 0.803 0.701 1.000 Ariso 0.016 1.000 1 0 0 2 C 2 0.895 0.701 1.000 4riso 0.011 0 0	
34.8732 alpha 90.000 4.6204 beta 98.675 35.7481 gamma 90.000	1 O 1 0.895 0.803 0.701 1.000 Aniso 0.016 1.000 1 0 0	
34.8732 alpha 90.000 4.6204 beta 98.675 35.7481 gamma 90.000 ace group P 21	1 0 1 0.865 0.803 0.701 1.000 4 0 0 2 C 2 0.865 0.830 0.701 1.000 1 0 0 3 N 3 0.838 0.735 0.697 1.000 4 0 0 4 C 4 0.823 0.537 0.697 1.000 4 0 0	
34.8732 alpha 90.000 4.6204 beta 98.675 35.7481 gamma 90.000 ace group P 21 atterers C26.5 H26.5 N26.5 O26.5	1 0 1 0 895 0.003 7.01 1.000 4eva 0.015 1.000 1 0 0 2 C 2 0.863 0.550 0.701 1.000 4eva 0.015 1.000 1 0 0 3 N 3 0.850 0.370 0.470 0.004 Ava 0.011 1.000 1 0 0 4 C 4 0.823 0.570 6.691 1.000 Ava 0.020 1.000 1 0 0 5 C 5 0.810 455 0.458 0.474 1.000 Ava 0.020 1.000 1 0 0	
34.8732 alpha 90.000 4.6204 beta 98.675 35.7481 gamma 90.000 ace group P 21 atterers C26.5 H26.5 N26.5 O26.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4.6204 beta 98.675 35.7481 gamma 90.000 ace group P 21	1 0 1 0 895 0.003 7.01 1.000 4eva 0.015 1.000 1 0 0 2 C 2 0.863 0.550 0.701 1.000 4eva 0.015 1.000 1 0 0 3 N 3 0.850 0.370 0.470 0.004 Ava 0.011 1.000 1 0 0 4 C 4 0.823 0.570 6.691 1.000 Ava 0.020 1.000 1 0 0 5 C 5 0.810 455 0.458 0.474 1.000 Ava 0.020 1.000 1 0 0	

del1

del1

Data

- Gemini-S diffractometer T = 175K Mo-wavelength
- ► < $I/\sigma(I)$ >= 7.91; $R_{int} = 0.085$ at 0.85 Å resolution 99.7 % completeness
- ► a = 34.87 b = 4.62 c = 35.74 $\beta = 90.0$ $\beta = 98.67$ $\gamma = 90.0$; V = 5694 Å³; space group $P2_1$

• refined structure:
$$R_{\rm F} = 0.136$$