

JANA 2006 et les paramètres fondamentaux

Modélisation empirique des profils

Analyse a posteriori de la fonction de profil

- Fonction pseudoVoigt :

$$PV = \eta L(2\theta, H_L) + (1 - \eta)G(2\theta, H_G)$$

- Fonction *TCH* (Thompson-Cox-Hasting modifiée) : avec :

$$\eta = 1.36603q - 0.47719q^{2} + 0.1116q^{3}$$

$$q = H_{L}/H$$

$$H = \left(H_{G}^{5} + AH_{G}^{4}H_{L} + BH_{G}^{3}H_{L}^{2} + CH_{G}^{2}H_{L}^{3} + DH_{G}H_{L}^{4} + H_{L}^{5}\right)^{0.2} = fwhm$$

$$A = 2.69269, B = 2.42843, C = 4.47163 \text{ et } D = 0.07842$$

$$H_{G} = (U \tan^{2} \theta + V \tan \theta + W + P/\cos^{2} \theta)^{1/2}$$

$$H_{L} = X \tan \theta + Y/\cos \theta$$
Attention, inversion X et Y dans certains programmes 1

Paramètres de résolution instrumentale

Utilisation d'un échantillon de référence pour mesurer la résolution instrumentale

Cu _{Ka}	<i>U</i> ≈0	<i>V</i> ≈0	W∕≈0.002	<i>X</i> ≈0.035	<i>Y</i> ≈0
Synchrotron	<i>U</i> ≈0.001	<i>V</i> ≈0	<i>W</i> ∕≈0.001	<i>X</i> ≈0	<i>Y</i> ≈0

RX de laboratoire : $H_G = W^{1/2}$ et $H_L = X$.tan θ

Avec principalement : X, distribution spectrale et W, profil foyer de la source et largeur fente de réception

Taille de cristallites et microdéformations

Taille des cristallites :

Nœuds du réseau réciproque non ponctuels conduisant à un relâchement des conditions de diffraction (cf. sphère d'Ewald).

Effet homogène sur tous les nœuds du réseau réciproque quelle que soit leur distance à l'origine.

Microdéformations :

Relaxation locale de la structure autour d'un défaut entrainant une distribution des distances inter réticulaires autour d'une distance moyenne d_0 .

Quantification de la distorsion par la limite supérieure de déformation : $\varepsilon = \Delta d / d$

Taille de cristallites et micro déformations extraction à partir des profils

Identification des termes de la fonction TCH

$$H_G = (U \tan^2 \theta + V \tan \theta + W + P / \cos^2 \theta)^{1/2}$$

 $H_L = X \tan \theta + Y / \cos \theta$

Taille des cristallites :

 $T_L = \frac{180 \cdot K \cdot \lambda}{\pi \cdot Y}$

Anisotrope :
$$T_{L\perp} = \frac{180 \cdot K \cdot \lambda}{\pi \cdot Y}$$
 $T_{L\parallel} = \frac{180 \cdot K \cdot \lambda}{\pi \cdot (Y + Y_e)}$

Taille des cristallites : $\beta = K\lambda/T\cos\theta$ Microdéformations : $\beta = 4\varepsilon \tan\theta$

Micro déformations:

$$\mathcal{E}_G(en\%) = \frac{\pi}{1.8} [U - U_i]^{1/2}$$

Isotrope :

$$\varepsilon_L(en\%) = \frac{\pi}{1.8} [X - X_i]$$

Anisotrope : $\varepsilon_{L\perp}(en\%) = \frac{\pi}{1.8} [X - X_i]$ $\varepsilon_{Ll}(en\%) = \frac{\pi}{1.8} [X + X_e - X_i]$

 U_i , X_i : contributions expérimentales

 X_e, Y_e : facteur d'anisotropie

Fonction instrumentale prédéterminée approche dite des paramètres fondamentaux

Fonction de profil : du constat à l'anticipation

Fonction instrumentale prédéterminée approche dite des paramètres fondamentaux

Une description complète du diffractomètre et de ses optiques doit être fournie au programme d'affinement.

Seules les **tailles de cristallites** et **microdéformations** sont des variables de l'affinement (terme *S* de la fonction de profil).

Approche paramètres fondamentaux : moins de paramètres à affiner, paramètres ayant un sens physique, inutile de re déterminer la contribution instrumentale en cas de changement de géométrie.

Approche paramètres fondamentaux distribution spectrale de la source

Exemple profil d'émission $K_{\alpha 1,2}$ d'un tube de laboratoire.

Aucune des deux composantes n'est purement lorentzienne. Toutes deux sont asymétriques et présentent une « queue » vers les hautes valeurs en longueur d'onde.

De plus les largeurs et asymétries des deux composantes diffèrent !

Double ionisation : transition principale $1s \rightarrow 2p + participation 3d$ notée $1s3d \rightarrow 2p3d$ d'où modélisation par 4 lorentziennes.

+ modélisation de la « trainée » vers les hautes énergies (satellites modélisés par une lorentzienne large)

Approche paramètres fondamentaux distribution spectrale de la source

Exemple profil d'émission $K_{\alpha 1}$ d'un tube de laboratoire avec monochromateur avant Ge111.

Disparition des satellites K_{α} et de la presque totalité de $K_{\alpha 2}$ (99.98%) Modélisation avec une seule lorentzienne.

Approche paramètres fondamentaux distribution spectrale de la source

Paramètres de profils utilisés :

Profil d'émission	Composante	λ(Å)	Intensité relative	Largeur lorent. (Å x 10 ⁻³)
CuKa5	satellites	1.534753	1.59	3.6854
	$K_{\alpha 1a}$	1.540596	57.91	0.437
	K _{α1b}	1.541058	7.62	0.6
	$K_{\alpha 2a}$	1.544410	24.17	0.52
	K _{α2b}	1.544721	8.71	0.62
CuKa1	$K_{\alpha 1}$	1.540596	100	0.5

Approche paramètres fondamentaux

Principe général :
$$\Omega(2\theta) = (W \otimes G) \otimes (T \otimes S)$$

instrument échantillon

Le terme T doit, en toute rigueur être ajouté pour tenir compte de la transparence de l'échantillon qui peut influencer le profil final (échantillon non infiniment épais).

Contribution instrumentale $\Omega_{I}(2\theta)$: $\Omega_{I}(2\theta) = W \otimes G_{1}(2\theta) \otimes G_{2}(2\theta) \otimes G_{i}(2\theta) \dots \otimes G_{n}(2\theta)$

Les termes $G_i(2\theta)$ correspondent aux différentes fonctions d'aberration liées à l'instrument.

Instrumental functions for (A) low-resolution, and (B) high-resolution diffractometers.

Approche paramètres fondamentaux

Principe de l'approche paramètres fondamentaux : le profil final est obtenu par convolution de fonctions décrivant les aberrations instrumentales appliqués au profil d'émission (Fig. d'après mode d'emploi de TOPAS)

Approche paramètres fondamentaux Instrument (+transparence échantillon)

 $\varepsilon = 2\theta - 2\theta_k$ R_P et R_S , rayons primaires et secondaires du diffractomètre

Aberration	nom	unité	fonction	
Instrument :				
Divergence équatoriale (fentes fixes)	FDS	0	$Fn(\varepsilon) = (4\varepsilon_m \varepsilon)^{-1/2}$ de $\varepsilon = 0$ à $\varepsilon_m = -(\pi/360)\cot(\theta_k)FDS^2$	°20
Divergence équatoriale (fentes variables)	VDS	mm	$Fn(\varepsilon) = (4\varepsilon_m \varepsilon)^{-1/2}$ de $\varepsilon = 0$ à $\varepsilon_m = -VDS^2 \sin(2\theta_k)(180/\pi)/4R_s^2$	$^{\circ}2 heta$
Taille de la source dans le plan équatorial	TA	mm	$Fn(\varepsilon) = \text{fonction rect. pour } -\varepsilon_m / 2 < \varepsilon < \varepsilon_m / 2$ avec $\varepsilon_m = (180 / \pi)TA / R_s$	$^{\circ}2 heta$
Tilt échantillon; épaisseur surface échantillon projetée sur plan équatorial	ST	mm	$Fn(\varepsilon) = \text{fonction rect. pour } -\varepsilon_m / 2 < \varepsilon < \varepsilon_m / 2$ avec $\varepsilon_m = (180 / \pi) \cos(\theta_k) ST / R_s$	$^{\circ}2 heta$
				/

13

Approche paramètres fondamentaux Instrument (+transparence échantillon)

Aberration	nom	unité	fonction	
Instrument :				
Longueur fente de réception dans plan axial	RSL	mm	$Fn(\varepsilon) = (1/\varepsilon_m) \left(1 - (\varepsilon_m / \varepsilon)^{\frac{1}{2}} \right)$ de $\varepsilon = 0$ à $\varepsilon_m = -(90/\pi) (SL/R_s)^2 \cot(2\theta_k)$	°20
Largeur fente de réception dans plan équatorial	RSW	mm	$Fn(\varepsilon) = \text{fonction rect. pour } -\varepsilon_m / 2 < \varepsilon < \varepsilon_m / 2$ avec $\varepsilon_m = (180 / \pi) RSW / R_S$	°2 $ heta$
Echantillon :				
Coefficient d'absorption linéaire	AB	cm ⁻¹	$Fn(\varepsilon) = (1/\delta) \exp(-\varepsilon/\delta)$ Pour $\varepsilon \le 0$ avec $\delta = 900 \sin(2\theta_k) / (\pi . AB.R_s)$	°2 $ heta$

Approche paramètres fondamentaux Echantillon

Contribution échantillon $\Omega_E(2\theta)$:

$$\Omega_{E}(2\theta) = S_{T_{crist}}(2\theta) \otimes S_{\mu def}(2\theta) \otimes \dots$$

Utilisation de différentes fonctions standard basée sur des composantes gaussiennes ou lorentziennes dont la largeur à mi-hauteur est contrainte pour rendre compte d'une dépendance particulière en 2θ ou en *hkl*.

Retour sur l'effet de transparence sur le profil :

Fig. 13. Specimen transparency aberration profiles at $2\theta = 30^{\circ}$ and 90° for linear attenuation coefficients of 50, 100, and 200 cm⁻¹.

Cheary, R. W., Coelho, A. A. & Cline, (2004)

Approche paramètres fondamentaux

Instrument + échantillon

Jana 2006 et les paramètres fondamentaux

	Powder options
Cell Radiation Profile	Asymmetry/Diffractometer Sample Corrections Various
O No correction	Primary radius [mm] 217.5
O Simpson correction	Secondary radius [mm] 217.5
O Berar-Baldinozzi correction	
O correction by divergence	RS width [mm] 0.2
• <u>f</u> undamental approach	FDS angle [deg] 0.3
O Debye-Scherer integration	
	Source length [mm]
	Sample length [mm]
	RS length [mm]
	Primary soller [deg]
	Secondary soller [deg] 🗹 2.5
	Esc Ok

Jana 2006 et les paramètres fondamentaux

	Powder options			
Cell Radiation Profile A	Asymmetry/Diffractometer	Sample	Corrections	Various
Apply weights in leBail decomposition				
Use structure of known phases in leBail	decomposition			
✓ Use predefined radiation profile				
Eile with radiation profile Cuka1.lam	V			
Use global cutoff				
	Ok			

Jana 2006 et les paramètres fondamentaux

Cell Radiation Profik Peak-shape function	Asymmetry/Diffractometer Cutoff 10 *Fv CSizeG CSizeGA	Sample	Corrections CSizeL 778.	Various
Peak-shape function Gaussian Lorentzian Pseudo-Voigt Modified Lorentzian	CSizeG		CSizeL 778.	0001
 <u>Gaussian</u> Lorentzian Pseudo-Voigt <u>M</u>odified Lorentzian 	CsizeG		CSizeL 778.	0001
Lorentzian Pseudo-Voigt <u>M</u> odified Lorentzian	CSizeG CSizeGA		CSizeL 778.	0001
 Pseudo-Voigt Modified Lorentzian 	CSizeGA			0981
Modified Lorentzian			CSizeLA	
	StrainG		StrainL 0.24	6241 🗸
	StrainGA		StrainLA	
 <u>A</u>xial method <u>T</u>ensor method 	tensor parameters			

Exemple paramètres fondamentaux JANA 2006 MnWO4

Exemple paramètres fondamentaux JANA 2006 MnWO4

21

Exemple paramètres fondamentaux JANA 2006 MnWO4

Exemple paramètres fondamentaux JANA 2006 Monazite (LaPO4)

Paramètres fondamentaux : références

Cheary, R. W. & Coelho, A. A. fundamental parameters approach to X-ray line- profile fitting. Journal of Applied Crystallography 25, 109–121 (**1992**).

Hölzer, G., Fritsch, M., Deutsch, M., Härtwig, J. & Förster, E. Kα1,2 and Kβ1,2 X-ray emission lines of the 3d transition metals. - Physical Review A, 56, 4554-4568 (**1997**).

Cheary, R. W. & Coelho, A. A. Axial Divergence in a Conventional X-ray Powder Diffractometer. I. Theoretical Foundations. Journal of Applied Crystallography 31, 851–861 (**1998**).

Cheary, R. W. & Coelho, A. A. Axial Divergence in a Conventional X-ray Powder Diffractometer. II. Realization and Evaluation in a Fundamental-Parameter Profile Fitting Procedure. Journal of Applied Crystallography 31, 862–868 (**1998**).

Kern, A. A. & Coelho, A. A. A New Fundamental Parameters Approach in Profile Analysis of Powder Data. - Allied Publishers Ltd., ISBN 81-7023-881-1, 144-151 (1998).

Cheary, R. W., Coelho, A. A. & Cline, J. P. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers. J. Res. Natl. Inst. Stand. Technol. 109, 1–25 (2004).

TOPAS/TOPAS R/TOPAS P Version 3.0 User 's Manual