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Chapter 1

Symmetry data in International Tables
for Crystallography, Volume A: Basic
concepts and notation

1.1 Symmetry operations

1.1.1 Crystallographic Symmetry Operations and Their Representations by
Matrices

In order to describe the symmetry operations analytically one introduces a coordinate system {O, a, b, c},
consisting of a set of basis vectors a, b, ¢ and an origin O. A symmetry operation can be regarded as an
instruction of how to calculate the coordinates Z, §, 7 of the image point X from the coordinates z, y, z
of the original point X.

The equations are

T = Wpnao+Woy+Wizz+u
y = Worax+ Way+ Wasz+ ws (111)
z = Wiairax+ Way+ Wiz z+ws,

These equations can be written using the matrix formalism:
z=We+w=(W,w)z where

the symmetry operations (W, w) are given in a matrix-column form consisting of a (3 x 3) matrix (linear)
part W and a (3 x 1)-column(translation) part w:

Wi Wia Wiz | w
(W, w)=| Wa Wy Wi |w; (1.1.2)

Wi Wiz Wiz | ws
Apart from the matrix-column pair presentation of (W, w) often the so-called short-hand notation for
the symmetry operations is used. It is obtained from the left-hand side of equ. (1.1.1) by omitting the

terms with coefficients 0 and writing in one line the three different rows of equ.(1.1.1), separated by
commas.
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For example, consider the symmetry operation under No. 30 in the list of general positions obtained by
the program GENPOS of the Bilbao Crystallographic Server (often referred to as BCS) for the space group
Pn3n, No. 222 (origin choice 2):

0 0 -1 T 0
z=(W,w)z=] 1 0 0 y |+ 1/2 | would be
01 0 z 1/2

2=0x+0y—1z g=124+0y+02+1/2, Z2=0x+1y+0z+1/2.
The shorthand notation of (W, w) reads: zZ,  + 1/2, y + 1/2.

1.1.2 Geometric Interpretation of the Matrix-column Pairs of Symmetry Op-
erations

Geometric meaning of matrix-column pairs (W, w)

The geometric meaning of a matrix-column pair (W, w) can be determined only if the reference coordi-
nate system is known. The following procedure indicates the necessary steps for the complete geometric
characterization of (W, w).

Procedure for the geometric interpretation of (W, w)

1. W -information

(a) Type of isometry: the types 1,2,3,4,6 or 1,2,3,4,6 can be determined by the matrix invariants:
det(W) and tr(W)

det(W) = +1 det(W) = -1
te(W)[3 2 1 0 -1]-3 -2 -1 0 1

type 1 6 4 3 2 1 6 4 3 2=m
order 1 6 4 3 2 2 6 4 6

[\

(b) Direction of u the rotation or rotoinversion axis or the normal of the reflection plane
i. Rotations: Calculate the matrix ¥ (W)= W'+ W* 24+ 4+ W + I. The elements
of any non-zero column of Y give the components of the vector u with respect to the
reference co-ordinate system.

ii. Rotoinversions: Calculate the matrix Y (— W). The elements of any non-zero column of
Y give the components of the vector u with respect to the reference co-ordinate system.
For2=m, Y(-W)=-W +1.

(¢) Sense of rotation (for rotations or rotoinversions with k& > 2): The sense of rotation is de-
termined by the sign of the determinant of the matrix Z, given by Z = [u|x|(det W) W x],
where u is the vector of 1b and « is a non-parallel vector of u, e.g. one of the basis vectors.

2. w -information

(a) Intrinsic translation part (screw or glide component) ¢/k

i. Screw rotations )
t/k = EYuuWhereWk =1 (1.1.3)
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ii. Glide reflections

t/k:%(W—kI)w (1.1.4)
(b) Location of the symmetry elements (fixed points z )
i t/k=0
(W, w)xpr = xp. (1.1.5)
i t/k#0
(W, wp)zr =zp. (1.1.6)

The column wy, = w — t/k is the so-called location part as it determines the position of the rotation or
screw-rotation axis or of the reflection or glide-reflection plane in space.

The formulae of this section enable the user to find the geometric contents of any symmetry operation.
In reality, International Tables for Crystallography, Vol. A (referred to as ITA in the following) provides
the necessary information for all symmetry operations which are listed in the plane—group or space—group
tables. The entries of the General position are numbered. The geometric meaning of these entries is listed
under the same number in the block Symmetry operations in the tables of IT'A. The explanation of
the symbols for the symmetry operations is found in Sections 2.9 and 11.2 of ITA.

1.1.3 Symmetry Operations and Symmetry Elements

The definitions of symmetry elements, geometric elements and the related element sets of symmetry
operations for crystallographic space groups and point groups are summarised in the following table.

Table 1.1.1 Symmetry elements in point and space groups
Name of Geometric  Defining Operations
symmetry element element operation (d.o) in element set
Mirror plane Plane A Reflection in A D.o. and its coplanar
equivalents®
Glide plane Plane A Glide reflection in A; 2v (not v) D.o. and its coplanar
a lattice translation equivalents™
Rotation axis Line b Rotation around b, angle 27 /n 1st, ..., (n — 1)th powers of d.o.
n=23,40r6 and their coaxial equivalents®
Screw axis Line b Screw rotation around b, angle 27r/n, 1st, ..., (n — 1)th powers of d.o.
u = j/n times shortest lattice and their coaxial equivalents®

translation along b, right-hand screw,
n=234o0r6,j=1,...,(n—1)
Rotoinversion Line b Rotoinversion: rotation around b, D.o. and its inverse
axis and point  angle 27/n, and inversion

Ponb through P, n=3,4 or 6
Center Point P Inversion through P D.o. only

* That is, all glide reflections with the same reflection plane, with glide vectors v differing from that of
d.o. (taken to be zero for reflections) by a lattice translation vector. The glide planes a, b, ¢, d and e are
distinguished.
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t That is, all rotations and screw rotations with the same axis b, the same angle and sense of rotation
and the same screw vector u (zero for rotation) up to a lattice translation vector.

1.2 Site symmetry: General and Special positions

The concept of Site symmetry, 1.e. the set of symmetry operations that leave a given point fixed, allows
to define General and Special positions for space groups.

Let G be a space group and X a point. The subgroup Sx = {( W, w)} of all (W, w) € G that leave X
fixed, i.e. for which (W, w)X = X holds, is called the site symmetry group Sx of G for the point X.
The group Sx < G is of finite order. If Sx = {I}, i.e. only the identity operation maps X onto itself, X
is called a point of General position. Otherwise, if Sx > {I}, X is called a point of Special position.

Each point X; of a G-orbit has its site symmetry group S; < G. The site symmetry groups S; and S; of
two points X; and X; of the same G-orbit are conjugate subgroups of G: if X; = (W, w)X,, (W, w) € G,
then S; = (W, w)S;(W, w)~!. For this reason, all points of one special position in ITA are described
by the same site-symmetry symbol.

In ITA the so-called oriented site-symmetry symbols are used to show how the symmetry elements at a
site are related to the symmetry elements of the crystal lattice. The oriented site-symmetry symbols of
the site-symmetry groups display the same sequence of symmetry directions as the space-group symbol.
Sets of equivalent symmetry directions that do not contribute any element to the site-symmetry group
are represented by a dot.

1.3 Coordinate Transformations: basic results

Let a coordinate system be given with a basis (a;, as, ag) and an origin O. The general transformation
(affine transformation) of the coordinate system consists of two parts, a linear part and a shift of the
origin. The transformation is uniquely defined by the (3 x 3) matrix P of the linear part and the (3 x 1)
column matrix p containing the components of the shift vector p.

1. The linear part is described by a (3 x 3) matrix

Pi1 Py Pi3
P = | Py Py Py
P31 P3y Ps3
i.e. the matrix which relates the new basis (a}, a), a}) to the old basis (a;, ag, a3) according to

Py Pip Pi3
(a}, a}, a}) = (a1, az, a3) P = (a1, ag, ag)| Py Py Pos | - (1.3.7)

P31 P33 P33
2. A shift of the origin is defined by the shift vector
p = (p1a1, paag, p3az)

The basis vectors a;, ag, az are fixed at the origin O; the new basis vectors (a}, a), a) are fixed
at the new origin O’ that has the coordinates (p1, p2, p3) in the old coordinate system.
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The general affine transformation of the coordinates of a point X in direct space (given by the column
x = (x1,22,x3)) is given by the following formula:

' =(P,p)le=P'lz—P 'p=P ' (z—p). (1.3.8)

The metric tensor G of the unit cell in direct lattice is transformed by the matrix P as follows:

G'=P'GP (1.3.9)

where P! is the transposed matrix of P.
The volume of the unit cell V' changes with the transformation. The volume of the new unit cell V' is
obtained by

V' =det(P)V (1.3.10)

with det(P) being the determinant of the matrix P.

Also, the matrix-column pairs of the symmetry operations are changed by a change of the coordinate
system. If a symmetry operation is described in the “old”(unprimed) coordinate system by the matrix-
column pair (W, w) and in the “new”(primed) coordinate system by the pair (W', w’), then the relation
between the pairs (W, w) and (W', w’) is given by:

(W', w')=(P,p)"(W,w)(P,p) (1.3.11)

The coordinate systems of the space groups used by the programs and database on the Bilbao Crystallo-
graphic Server (referred to as standard or default settings) for the presentation of the space-group data
coincide with the conventional space-group descriptions found in ITA. For space groups with more than
one description in ITA, the following settings are chosen as standard: unique axis b setting, cell choice 1
for monoclinic groups, hezagonal azes setting for rhombohedral groups, and origin choice 2 (origin in 1)
for the centrosymmetric groups listed with respect to two origins in ITA. Optionally certain applications
allow the usage of the so-called IT'A settings which include all conventional settings applied in ITA
(e.g. Thombohedral azes setting for rhombohedral groups, and origin choice 1 for the centrosymmetric
groups) and the great variety of about 530 settings of monoclinic and orthorhombic groups listed in
Table 4.3.2.1 of ITA. Settings different from the standard ones and the ITA settings are designated as
non-conventional.

1.4 Group-subgroup relations of space groups

1.4.1 Basic definitions

A subset H of elements of a group G is called a subgroup of G, G > H if it fulfills the group postulates
with respect to the law of composition of G. In general, the group G itself is included among the set of
subgroups of G, i.e. G > H. If G > H is fulfilled, then the subgroup H is called a proper subgroup of G.
A subgroup H < G is a maximal subgroup if no group Z exists for which H < Z < G holds.

Let H < G be a subgroup of G of order |H|. Because H is a proper subgroup of G there must
be elements g, € G which are not elements of H. Let go € G be one of them. Then the set of elements
g H={g h; | h; € 7—[}1 is a subset of elements of G with the property that all its elements are different
and that the sets H and go H have no element in common. Thus, also the set g, H contains |#H| elements
of G. If there is another element g3 € G which does belong neither to H nor to go H, one can form another
set g3 M = {g3 h; | h; € H}. All elements of g3 H are different and no one occurs already in H or in go H.

1The formulation go H = {g2 hj | hj € H} means: ‘g2 H is the set of the products g2 hj of go with all elements h; € H.’
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This procedure can be continued until each element g, € G belongs to one of these sets. In this way the
group G can be partitioned, such that each element g € G belongs to exactly one of these sets.

The partition just described is called a decomposition (G : H) into left cosets of the group G relative to
the group H.

G=HUgHU---UgH (1.4.12)

The sets g, H, p=1, ..., © are called left cosets, because the elements h; € H are multiplied with the
new elements from the left-hand side. The procedure is called a decomposition into right cosets H g, if
the elements h; € H are multiplied with the new elements g, from the right-hand side.

QZHUH92U~-U”Hgi (1.4.13)

The elements g, or g, are called the coset representatives. The number of cosets is called the index
[i]=1G:H|of Hin G.

Two subgroups H;, Hi < G are called conjugate if there is an element g, € G such that g, "9, =
Hj holds. In this way, the subgroups of G are distributed into classes of conjugate subgroups that are
also called comjugacy classes of subgroups. Subgroups in the same conjugacy class are isomorphic and
thus have the same order. Different conjugacy classes of subgroups may contain different numbers of
subgroups, i.e. have different lengths.

A subgroup H of a group G is a normal subgroup H <1 G if it is identical with all of its conjugates,
g;l'H 9q = H, for all g, € G, i.e. if its conjugacy class consists of the one subgroup H only.

1.4.2 Subgroups of space groups

The set of all symmetry operations of a three-dimensional crystal pattern forms its symmetry group, which
is the space group of this crystal pattern. An essential feature of a crystal pattern is its periodicity which
indicates that there are translations among its symmetry operations. The infinite number of translations
determines the infinite order of any space group. The set of all translations of a space group G forms the
infinite translation subgroup 7(G) <G which is a normal subgroup of G of finite index. Consider the right
coset decomposition of G relative to 7(G).

(I, O) (WQ, 'LUQ) (Wm, wm) (W“ wl)

(I, tl) (WQ, w2+t1) (Wm, wm+t1) (W“ wi+t1)
(I7 tg) (Wg, w2+t2) (Wm, wm+t2) (W“ ’wi—‘rtg)
(I, t]) (WQ, w2+tj) (Wm, mert]) (W“ wz+t])

Obviously, the coset representatives of the decomposition (G : 7(G)) represent in a clear and compact
way the infinite number of elements of the space group G. And this is one of the ways of presenting the
space groups in ITA and also in the Bilbao Crystallographic Server, i.e. by the matrices of the coset
representatives of (G : T(G)) listed in the General position.

Each coset in the decomposition (G : T(G)) is characterized by its linear part. One can show
that the set of linear parts, represented by the set of matrices W, forms a group which is called the
point group Pg of the space group G. The point groups which can belong to space groups are called
crystallographic point groups.

The following types of subgroups of space groups are to be distinguished:
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A subgroup H of a space group G is called a translationengleiche subgroup or a t-subgroup of G if the set
T(G) of translations is retained, i.e. T(H) = T (G), but the number of cosets of the decomposition
(G :T(G)), i.e. the order of the point group P is reduced.

A subgroup H < G of a space group G is called a klassengleiche subgroup or a k-subgroup if the set T(G)
of all translations of G is reduced to T(H) < T(G) but all linear parts of G are retained. Then the
number of cosets of the decompositions (H : T(H)) and (G : T(G)) is the same, i.e. the order of the
point group P17 is the same as that of Pg.

A klassengleiche or k-subgroup H < G is called isomorphic or an isomorphic subgroup if it belongs to
the same affine space-group type (isomorphism type) as G does.

A subgroup of a space group is called general or a general subgroup if it is neither a translationengleiche
nor a klassengleiche subgroup. It has lost translations as well as linear parts, i.e. point-group
symmetry.

Subgroup specification Any subgroup H of a group G is related to a specific subset of elements of
G and this subset defines the subgroup uniquely: different subgroups of G, even those isomorphic to H,
correspond to different subsets of the elements of G. For example, the listing of the maximal ¢t-subgroups
of the space groups in ITA is based on this fact: apart from the space-group type and index, each t-
subgroup H is specified by the set of coordinate triplets of the general position of G which are retained
in H.

Any subgroup H of a space group G can be specified by its ITA-number, the index in the group G
and the transformation matrix-column pair (P, p) that relates the standard bases (a, b,c)q; of H and

(a,b,c)g of G:

(a,b,c)y = (a,b,c)g P (1.4.14)

The column p = (p1,p2, p3) of coordinates of the origin O, of H is referred to the coordinate system of
g.
The subgroup data listed in the Bilbao Crystallographic Server, i.e. the space-group type of H and the
transformation matrix (P, p), are completely sufficient to define the subgroup uniquely: the transforma-
tion of the coordinate triplets of general-position of H (in standard setting) to the coordinate system of
G by (P, p)~! yields exactly the subset of elements of G corresponding to H.

Hermann theorem A very important result on group-subgroup relations between space groups is
given by Hermann’s theorem: For any group—subgroup chain G > H between space groups there exists
a uniquely defined space group M with G > M > H, where M is a translationengleiche subgroup of G
and H is a klassengleiche subgroup of M. The decisive point is that any group-subgroup chain between
space groups G > H of index [i] can be split into a translationengleiche subgroup chain between the space
groups G and M of index [ip] and a klassengleiche subgroup chain between the space groups M and H

of index [ir] where [i] = [ip] - [iz]. The first one, also called ¢-chain G < M, is related to the reduction

of the point-group symmetry in the subgroup. The second one M < H; is known also as k-chain and it
takes account of the loss of translations.

It may happen, that either G = M or H = M holds. In particular, one of these equations must
hold if H < G is a maximal subgroup of G. In other words, a maximal subgroup of a space group is either
a translationengleiche subgroup or a klassengleiche subgroup, never a general subgroup.

Maximal-subgroup chains If the maximal subgroups are known for each space group, then in prin-
ciple each non-maximal subgroup of a space group G with finite index can be obtained from the data on
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maximal subgroups. A non-maximal subgroup H < G of finite index [¢] is connected with the original
group G through a chain H = 2}, < Zp_1 < --- < 21 < Z¢9 = G, where each group Z; < Z;_; is a
maximal subgroup of Z;_;, with the index [i;] = |Z;_1 : Z,|, s = 1,...,k. The number k is finite and
the relation ¢ = H§:1 i;  holds, i.e. the total index [¢] is the product of the indices ;.

In a similar way, one can express the transformation matrix (P, p) for the symmetry reduction
G — H as a product of the transformation matrices (P, p); characterizing each of the intermediate
steps Z,_1 > Z;: (P,p) = (P,p)1(P,p)2--- (P, p)r (here the matrices (P, p); relate the bases of Z;_;
and Z;, i.e. (a,b,c); = (a,b,c);_1P;).

1.4.3 Minimal supergroups

In the previous sections the relation H < G has been seen from the viewpoint of the group G. In this case
‘H was a subgroup of G. However, the same relation may be viewed from the group #. In that case G > H
is a supergroup of H. As for the subgroups of G, different kinds of supergroups of H may be distinguished.
The following definitions are obvious:

Let ‘H < G be a maximal subgroup of G. Then G > H is called a minimal supergroup of H.

If H is a translationengleiche subgroup of G then G is a translationengleiche supergroup (t-supergroup)
of H.

If H is a klassengleiche subgroup of G, then G is a klassengleiche supergroup (k-supergroup) of H.
If H is an isomorphic subgroup of G, then G is an isomorphic supergroup of H.
If H is a general subgroup of G, then G is a general supergroup of H.

Following from Hermann’s Theorem, a minimal supergroup of a space group is either a translationengleiche
supergroup (t-supergroup) or a klassengleiche supergroup (k-supergroup). A proper minimal ¢-supergroup
has always an index i, 1 < ¢ < 5, and is never isomorphic. A minimal k-supergroup with index i, 1 <
i < 5, may be isomorphic or non-isomorphic; for indices 7 > 4 a minimal k-supergroup can only be an
isomorphic k-supergroup. The propositions, theorems and their corollaries of for maximal subgroups are
valid correspondingly for minimal supergroups.

Subgroups of space groups of finite index are always space groups again. This does not hold for
supergroups. For example, the direct product G of a space group H with a group of order 2 is not a space
group although H < G is a subgroup of index 2 of G. Moreover, supergroups of space groups may be
affine groups which are only isomorphic to space groups but not space groups themselves.

In the following we restrict the considerations to supergroups G of a space group H which are
themselves space groups. This holds, for example, for the symmetry relations between crystal structures
when the symmetries of both structures can be described by space groups. Quasicrystals, incommensurate
phases etc. are thus excluded. Even under this restriction, supergroups show a much more variable
behaviour than subgroups do.

In general, the search for supergroups of space groups is much more difficult than the search for subgroups.
One of the reasons for this difficulty is that the search for subgroups H < G is restricted to the elements
of the space group G itself, whereas the search for supergroups G > H has to take into account the
whole (continuous) group £ of all isometries. For example, there is only a finite number of subgroups
‘H of any space group G for any given index . On the other hand, there may be not only an infinite
number of supergroups G of a space group H for a finite index ¢ but even an uncountably infinite number
of supergroups of H. As an example, consider the group H = P1. Then there is an infinite number of
t-supergroups P1 of index 2 because there is no restriction for the sites of the centres of inversion and
thus of the conventional origin of P1.
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It is important to note that the ¢ supergroups represent space groups only if the lattice conditions of H
fulfil the lattice conditions for G. This requirement is always satisfied if the group H and the supergroup
G belong to the same crystal family. If G is a k-supergroup of H, G and H always belong to the same
crystal family, and there are no lattice restrictions on . In that sense the lattice conditions are useful in
the search for supergroups G > H which are space groups, i. e. form the symmetry of crystal structures.
Whereas a subgroup H < G does not become noticeable in the lattice parameters of a space group
G, a space group G > H of another crystal family must be indicated by the lattice parameters of the
space group H. Thus it may be an important advantage if the conditions of temperature, pressure or
composition allow to start the search for possible phase transitions at the low-symmetry phase.

1.5 Generation of Crystallographic Groups

1.5.1 Crystallographic point-groups and abstract groups

In this section we describe shortly the relation of the point groups to their abstract groups. There are
four kinds of abstract groups:

- Cyclic groups

- Abelian non-cyclic groups

non-Abelian groups
- direct products of non-Abelian groups with the cyclic group of order 2.

The types of crystallographic point groups, i. e. the crystal classes, are distinguished by the geometric
meaning of their groups of symmetry operations of the macroscopic crystals. In algebraic terms, the
classification principle is the affine equivalence of matrix groups, cf. I'T A, Section 8.2.3. In this respect,
an inversion, a two-fold rotation, and a reflection are clearly to be distinguished. However, considered as
groups together with the identity operation, these three symmetries belong to the same type of groups,
also called the same abstract group, which is here "Cs, the cyclic group of order 2". Isomorphic point
groups may belong to different crystal classes but point groups of the same crystal class belong always
to the same abstract group, 4. e. are isomorphic.

The representations of the groups are properties of the abstract groups. Therefore, isomorphic point
groups, i. e. point groups belonging to the same abstract group, have the same irreps. Instead of the 32
types of point groups or crystal classes, only 18 different abstract groups have to be distinguished. In
Table 1.5.1 the classification of the 32 crystal classes into 18 abstract groups is displayed. In order to be
able to distinguish the symbols for crystallographic point groups from those of the abstract groups, the
crystallographic point groups are designated by their HM symbols; the corresponding abstract groups
by Schoenflies symbols. These symbols are assumed to be known; they can be found in IT A or in any
textbook of crystallography.

The derivation of the 32 crystal classes can be found in many textbooks, either by geometric, e. g. Buerger
(1956), or by a mixture of geometric and algebraic arguments, e. g. Burckhardt (1966), Rigault (1980).
The crystal classes and their irreducible representations (irreps) can be easily determined once the 18
abstract groups and their irreps are known.
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Table 1.5.1 The crystallographic point groups as abstract groups
Symbol order HM symbols

Ci 1 1
Co 2 2,m, 1
Cs 3 3
Cy 4 4,4

Ce=C3 x Co 6 3,6,6

Dy =Cy x Co 4 2/m, 222, mm2
D3 6 32, 3m
Dy 8 422, 4mm, 42m

D¢ =D3 x Co 12 3m, 622, 6mm, 62m

Doy, =Co x Cy X Co 8 mmm

Cap, =Cyq x Cy 8 4/m

Cen =Cg x Cy 12 6/m

Dy, =Dy x Ca 16 4/mmm

Do, = Dg x Co 24 6/mmm
T 12 23

Trh=T x Co 24 m3
@ 24 432, 43m

O0,=0 x Cy 48 m3m

First column: Schoenflies symbol for the abstract group: C cyclic group; D dihedral group;
T tetrahedral group; O octahedral group. ‘X’ means ‘direct product’

Second column: group order

Third column: short Hermann-Mauguin symbols of the crystallographic point groups

1.5.2 Solvable Groups

Abelian groups and the remaining groups D3, D4, T, and O, i. e. all abstract groups of crystallographic
point groups are solvable groups.
Definition (D 1.5.2.1) A group G is called a solvable group or a soluble group if a series of subgroups
H,; exists

GoHi> - DHp 1D Hy =T,
such that the factor groups H;/H; 1 of the pairs H, <G, Ha << H1, ete. are cyclic groups of prime order.

In this series which is called a composition series each of the subgroups H; is a normal subgroup of the
group H;_1 but not necessarily of the groups Hjy with k < ¢ — 1. In particular, H;, ¢ > 1, need not be a
normal subgroup of G. The group Z (identity group) is the group consisting of the unit element e only.

1.5.3 Generation of Point Groups

A set of generators of a group is a subset of the group elements which by proper combination permits the
generation of all elements of the group. Different sets of generators are possible. In IT A the generation



1.5. GENERATION OF CRYSTALLOGRAPHIC GROUPS 17

of the point groups by composition series is used. It is displayed in Figs. 1.5.1 and 1.5.2. A solid line
connects a pair group — normal subgroup; a horizontal dashed arrow to the left points from the subgroup
to the direct product with 1. The symbols at the solid lines are those of the generators which generate
the group from the normal subgroup. Because of its importance for the derivation of the irreps, this kind
of generation is also described in Tables 1.5.2 and 1.5.3.

Important for the calculation of the irreps in the next chapter is the observation that all factor groups in
these series have orders 2 or 3, i. e. are cyclic groups of orders 2 and 3.

TR R 432 (43m)

2 110
m3 oo 23 B
4/mmm =------- 422 (Amm ,42m)
3111
2110
mmm <~ 223 (mm2)  Am < 4 3
x /
2fm =-ooee 2 (m)
22
1 = 1

Fig. 1.5.1 Generation of sub-cubic point groups, see Tab. 1.5.2

6/mmm —<------- 622 (6mm,62m)
_ 200
3m <--oooo 32(3m) 6/m = 6 (6)
2110 22
3 = 3
3
1

Fig. 1.5.2 Generation of sub-hexagonal point groups, see Tab. 1.5.3
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Table 1.5.2 The generation of sub-cubic point groups

HM Symbol SchoeSy generators compos. series
1 C1 1 1
1 C; 1,1 11
P Co 1,2 251
m Cs 1I,m mp>1
2/m Can 1,21 2/mp>2>1
9222 D, 1, 2., 2, 222> 21> 1
mma2 Cay 1,2,, my mm2>2p>1
mmm Doy, 1,2,,2,1 mmm > 222> ...
4 Cy 1,2,,4 4>2>1
4 Sy 1,2,,4 421
4/m Can 1,2,,4,1 4/m> 4>
... 422 ....... D4 ........ 1, 227 47 Qy .................. 4 22 >4 > ..........
dmm Cao 1,2;, 4, my dmm > 4>
42m Doy 1,2, 4,2, P2m 4> ...
4/mmm Dan 1,2,,4,2,1 4/mmm > 422> ...
23 T 1,2.,2,, 3111 23> 222> ...
m3 Th 1, 2., 2, 3111,1 m3 > 23 >
. 432 ....... O ......... 1, 2Z7 21”31117 2110 .......... 4 32 >23 D ......
43m Ta 1, 2., 2y, 3111, M7, 43m > 231> ...
m3m Oy, 1, 2., 2y, 3111, 2110, 1 m3am > 432> ...

Composition series of point group m3m and its subgroups, see also Fig. 1.5.1. For the longer composition
series only the first members are listed.

1.5.4 Generation of Space Groups

In ITA the generators and the generating procedure of the space groups have been chosen such as to
make the entries in the blocks of General position and Symmetry operations as transparent as possible.
Given the set of h generators Gi,Ga,...,Gp,... Gy, any space-group operation W is generated by the
following algorithm, starting with the identity and the translations as right-most factors:

W =Gk .Gyt GRe L GRe GR2 Gy (1.5.15)

Here, the exponents k,, are positive or negative integers, including zero.

The space-group generator Gy is the identity (zero translation). It is chosen first and assures that the
general position of G starts with the coordinate triplet x,y, z.The following generatorsGy, Gz, G4 are
the translations corresponding to the three basis vectors a, b, ¢ and G5, Gg are the generators for the
centring translations, if present. The rest of the generators G7, Gg, ... give all those symmetry operations
of the space group G which are not pure translations. They have been chosen such that their exponents
can assume only the values 0,1 and 2. Space groups of the same crystal class are generated in the same
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Table 1.5.3 The generation of sub-hexagonal point groups

HM Symbol SchoeSy generators compos. series
1 C1 1 1
3 Cs 1,3 31
3 Ss 1,3, 1 3>3>1
..... 321)31,37211032>3>1
3m Csw 1, 3, mi10 3m>3>1
3m Dsq 1, 3, 2110, 1 3m> 32> ...
6 Cs 1,3, 2, 6>3>1
6 Csn 1,3, m, 6>31>1
6/m Ceon 1,2,2,,1 6/m> 60>
622 ........ D .6 ......... : 737 22’2110 ......... 622 >6> .. .. .......
6mm (o 1,3, 2., mi1g 6mm>60p ...
62m D3y, 1, 3, m., 2110 62m>610> ...
6/mmm Deh, 1, 3, 2., 2110, 1 6/mmm > 6221> ...

Composition series of point group 6/mmm and its subgroups, see also Fig. 1.5.2. For the longer compo-
sition series only the first members are listed. The complete series can be composed step by step using
the previous composition series.

way. In ITA, the generators are designated by the numbers in front of the corresponding general-position
co-ordinate triplets.

The coordinate triplets of the General position are obtained by single-sided, (i.e left-sided) multiplication
of the matrices representing the generators until no new matrices are found. Resulting matrices that differ
only by a lattice translation are considered as equal, and the translations parts are chosen such so that
the symmetry operations lie within the unit cell.

The generating procedure used in ITA highlights important subgroups of space groups as much as possible.
For example, once the translation subgroup Tg of a space group G is generated, the process of generation
follows step-wise procedure via a chain of normal and maximal subgroups

g>7—l1>%2>--~>7’g, (1.5.16)

with indices |H,; : Hit+1| equal to 2 or 3. In other words, each new (non-translational) generator generates
a minimal translationengleiche or t-supergroup H; of H;y1 of index 2 or 3.
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1.6 Exercises

1.6.1 Matrix calculus in crystallography (brief revision)
e Exercise 1.6.1.1. Matrix transposition

1. Construct the transposed matrix of the (3 x 1) row matrix A = (1 3 4) .

2. Determine which of the following matrices are symmetric and which are skew-symmetric

A:<3 0);3:( 34);0:( 2—1>;D:< 02>;E:<00>;
02 41 -1 1 20 10

0 1 -2 39 -
F:(2); -1 o0 3|l:H=|21]:7= .
00

2.3 0 10

e Exercise 1.6.1.2. Matrix addition and subtraction

. 12 1 3
1. Find 3A-2B, where A = and B = .
30 0 —4

2. Show that the sum of any matrix and its transposed is a symmetric matrix, i.e. (4 + AT)T =
A+ AT

3. Show that the difference of any matrix and its transposed is a skew-symmetric matrix, i.e.
(A— AT = (A - A").

e Exercise 1.6.1.3. Matrix multiplication

1 2 3 -2 2
1. Find the products AB and B A if they exists, where A = (3 ) and B = (1 0 1).

2. Find the matrix products AB and B A of the row vector A = (1 2 3) and the column vector

—2
B = 4

-1
12 10 -1
3. Prove that A(BC)=(AB)C where A = < ) 3), B = ( ) 0) and C= |3 2

e Exercise 1.6.1.4. Trace and determinant of a matrix

1. Find the values of the traces and the determinants of A and B where

L9 0 4 2
A= and B=1]4 -2 —1
-13

5 1 3

32 16
2. Show that det(AB) = det(A)det(B) where A = (5 1) and B = (2 9).
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113
3. Show that det(A) = det(A”) where A= |2 2 2
323
e Exercise 1.6.1.5. Inverse of a matrix
11 -9 1 12 3
1. Show that the matrix B =1/3| -7 9 —2 | istheinverseof A= |13 5
2 -3 1 1512
-1 00 0-1 0 001
2. Determine the inverses of the matrices A = 0-101|;B=|1 0 0;C=|100];
0 01 0 0 -1 010
110 -1 1 1 011
D=|-110]|;F= 1-1 1]Jand F=|101
001 1 1 -1 110
1 20
3. Given that A= | —1 0 3 | determine A~ *.
2 -10

e Exercise 1.6.1.6. Matrix-column presentation of symmetry operations

1. Referred to an ‘orthorhombic’ coordinate system (a # b # ¢;a = 8 = v = 90) two symmetry

100 0
operations are represented by the following matrix-column pairs: (W1, w;) = 0101(,]0
001 0
100 1/2
and (W, wy) = 0101, 0
001 1/2
0.7
(a) Determine the images X; of a point X = | 0.31 | under the action of the symmetry
0.95
operations.
(b) Can you guess what is the ‘geometric nature’ of (W, w,) and (Wa, ws)?
(¢) Determine the determinant and the trace of W.
(d) Determine the sets of fixed points of (W1, w;) and ( Wy, ws).
010 0
2. Consider the matrix-column pairs of the two symmetry operations (W1, wy) = 1001],]0
001 0
100 1/2
and (Wo, wy) = 0101, 0

001 1/2
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(a) Determine and compare the matrix-column pairs of the combined symmetry operations:
(W, ’UJ) = (I’Vl7 wl)( Wg, ’wg) and (VV7 'w)’ = (Wg, 'lUQ)( Wl, 'wl).
(b) Determine the inverse symmetry operations (W, w;)~! and (W27 wg)_l.

(c) Determine the inverse symmetry operation (W, w)~ ! if (W, w) = (W1, w;)(Wa, ws).
010 1/2 010
3. Consider the matrix-column pairs (4, a) = 100, 1/2 and (B, b) 001
001) \1/2 ( 100
(a) zNhat)are the matrix-column pairs resulting from: (4, a)(B, b) = (C, ¢) and (B, b)(
D, d).

(b) Determine (A4,a)~!, (B,b)™!, (C,c)~! and (D,d)~!. What is (B, b)"*(4,a)"1?

1.6.2 Space-group symmetry data

e Exercise 1.6.2.1. Matrix-column presentation of symmetry operations

1. Referred to an ‘orthorhombic’ coordinate system (a # b # ¢;a = = v = 90) two symmetry
operations are represented by the following matrix-column pairs:

100 0 100 1/2
(Wi, wp) = 010(,]60 and (Wa, wq) = 010{, 0
001 0 001 1/2
0.7
(a) Determine the images X; of a point X = | 0.31 | under the action of the symmetry
0.95

operations.
(b) Can you guess what is the ‘geometric nature’ of (W, wy) and (W, wy)?
(¢) Determine the determinant and the trace of W.
(d) Determine the sets of fixed points of (W1, w;) and ( Wy, ws).

2. Consider the matrix-column pairs of the two symmetry operations

010 0 100 1/2
(Wi, wy) = 100],]0 and (Wy, wsy) = 010], 0
001 0 001 1/2

(a) Determine and compare the matrix-column pairs of the combined symmetry operations:
(W, w) = (I’Vl7 wl)( Wg, ’wg) and (VV7 w)’ = (WQ, 'wg)( W17 wl).
(b) Determine the inverse symmetry operations (W, w;)~! and (W27 wa) L.

(c) Determine the inverse symmetry operation (W, w)~! if (W (Wi, wy)(Wa, ws).
010 1/2 010

3. Consider the matrix-column pairs (A4, a) = 100],]1/2 and ( 001],
001 1/2 100

(a) What are the matrix-column pairs resulting from: (A4, a)(B, b) = (C, ¢) and (B, b)(
(D, d).
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(b) Determine (A4,a)~!, (B,b)"!, (C,c)~! and (D,d)~!. What is (B, b)"*(4,a)"1?
e Exercise 1.6.2.2. Consider the General position data given in ITA for the space group

(a) Cmm2 (No. 35):
1. Characterize geometrically the matrix-column pairs listed under General position of the
space group C'mm2. Compare the results with the data listed under Symmetry operations.

2. Consider the diagram of the symmetry elements of Cmm?2. Try to determine the matrix-
column pairs of the symmetry operations whose symmetry elements are indicated on the
unit-cell diagram.

3. Compare your results with the results of the program SYMMETRY OPERATIONS for the ge-
ometric interpretation of the matrix-column pairs of the symmetry operations considered
in this exercise.

(b) P4mm (No. 99):

1. Characterize geometrically the matrix-column pairs listed under General position of the
space group P4mm. Compare the results with the data listed under Symmetry operations.

2. Consider the diagram of the symmetry elements of P4mm. Try to determine the matrix-
column pairs of the symmetry operations whose symmetry elements are indicated on the
unit-cell diagram.

3. Compare your results with the results of the program SYMMETRY OPERATIONS for the ge-
ometric interpretation of the matrix-column pairs of the symmetry operations considered
in this exercise.

Attachments: Copies of the ITA pages with the space-group data of C'mm2, No. 35.
Copies of the ITA pages with the space-group data of P4mm, No. 99.

o Exercise 1.6.2.3. The General position of a space group is listed as:
D) zyz 2)zTy+3,72+3
(3) 7,5,2 (9 z,7+35.2+3.
1. Construct the matrix-column pairs of these ‘coordinate triplets’. Write down the corresponding
(4 x 4) matrix representation.

2. Characterize geometrically the matrices if they refer to a monoclinic basis with unique axis b
(type of operation, glide (screw) component, fixed points, nature and location of the symmetry
element).

3. Use the program SYMMETRY OPERATIONS of BCS for the geometric interpretation of the matrix-
column pairs of the symmetry operations.

e Exercise 1.6.2.4. Determine the orientation and location of the three mutually perpendicular 2-fold
rotation axes in the space groups P222, P222;, P2,2:2 y P21212;.

e Exercise 1.6.2.5. Consider the special Wyckoff positions of the the space group P4mm (No. 99)

1. Determine the site-symmetry groups of Wyckoff positions 1a and 1b. Compare the results with
the listed data of P4mm in ITA .

2. The coordinate triplets (x,1/2,z) and (1/2,z,z2), belong to Wyckoff position 4f. Compare
their site-symmetry groups.

3. Compare your results with the output of the BCS program WYCKPOS for the space group P4dmm.
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4. Use the option Non-conventional settings of the program WYCKPOS to determine the coordinate
triplets of the Wyckoff positions of the space group P4mm referred to a non-conventional
setting with the four-fold rotation axes parallel to a axis.

Attachments: Copies of the ITA pages with the space-group data of P4mm, No. 99.

e Exercise 1.6.2.6. The following matrix-column pairs (W, w) are determined with respect to a basis
(abe): (1) 29,2 (2) Z,y+ 3,2+ 3 (3) 2,5,2 (4) &, 5+ 3,2 + L.

- Determine the corresponding matrix-column pairs (W', w’) with respect to the basis (a’,b’, c¢’) =
(a,b,c)P, with P= c,a,b.

0.70
- The coordinates of a point X = | 0.31 | are determined with respect to the basis (a,b,c).

0.95
What would be the coordinates X’ referred to the basis (a’,b’, ¢)?

e Exercise 1.6.2.7. ITA -conventional settings of space groups

1. Consider the space group P2;/c (No. 14). Show that the relation between the General and
Special position data of P1121 /a (setting unique azis ¢ ) can be obtained from the data P12; /cl
(setting unique axis b ) applying the transformation (a, b, c). = (a, b, ¢), P, with P= c,a,b.

2. Use the BCS retrieval tools GENPOS (generators and general positions) and WYCKPOS (Wyckoff
positions for accessing IT A data. Get the data on general and special positions in different
settings either by specifying transformation matrices to new bases, or by selecting one of the
530 settings of the monoclinic and orthorhombic groups listed in ITA (cf. Table 4.3.2.1).

Attachments: Copies of the ITA pages with the space-group data of P2;/c (No. 14).
e Exercise 1.6.2.8. ITA and Non-conventional settings of space groups

1. Use the BCS retrieval tools GENPOS (generators and general positions), WYCKPQS (Wyckoff
positions and HKLCOND (reflection conditions) for accessing IT A data. Get the data on general
and special positions in different settings either by specifying transformation matrices to new
bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed
in ITA (cf Table 4.3.2.1).

2. Consider the General position data of the space group I'm3m (No. 229). Using the option
Non — conventional setting obtain the matrix-column pairs of the symmetry operations with
respect to a primitive basis (a,, by, ¢p), applying the transformation a,, by, c, = %(—a +b+
c),3(a—b+c),3(a+b—c) (where (a,b,c) is the conventional basis).

1.6.3 Group-subgroup relations of space groups

e Exercise 1.6.3.1. Construct the diagram of the ¢t-subgroups of P4mm using the ‘analogy’ with the
subgroup diagram of the group 4mm, cf. Exercise 7?7. Give the standard Hermann-Mauguin symbols
of the t -subgroups of P4dmm.

o Exercise 1.6.3.2. The retrieval tool MAXSUB gives an access to the database on maximal subgroups of
space groups as listed in T A1. Consider the maximal subgroups of the group P4mm, (No. 99) and
compare them with the maximal subgroups of P4mm derived in Problem 1.6.3.1 (ITA Ezercises).
Comment on the differences, if any.



1.6. EXERCISES 25

e Exercise 1.6.3.3. Study the group—subgroup relations between the groups G = P4;2:2, No. 92, and
‘H = P21, No. 4 using the program SUBGROUPGRAPH. Consider the cases with specified (e.g. [i] = 4)
and unspecified index of the group-subgroup pair.

e Exercise 1.6.3.4. Translationengleiche subgroups of P4dmm

(a) Explain the difference between the contracted and complete graphs of the t-subgroups of P4mm
(No. 99) obtained by the program SUBGROUPGRAPH. Compare the complete graph with the
results of Problems ?7?7. and 1.6.3.1 of ITA Exercises.

(b) Explain why the t-subgroup graphs of all 8 space groups from No. 99 (P4mm) to No. 106
(P42bc) have the same ‘topology’ (i. e. the same type of ‘family tree’), only the corresponding
subgroup entries differ.

e Exercise 1.6.3.5. Domain-structure analysis

Determine the type and number of domain states in structural phase transitions specified by:

1. High-symmetry phase: P2/m

Low-symmetry phase: P1 with small unit-cell deformation;
2. High-symmetry phase: P2/m

Low-symmetry phase: P1 with duplication of the unit cell;
3. High-symmetry phase: P4mm

Low-symmetry phase: P2 of index 8;
4. High-symmetry phase: P45bc

Low-symmetry phase: P2; of index 8.

e Exercise 1.6.3.6. Phase transitions in BaTiO3

The crystal structure of BaTiOg is of perovskite type. Above 120C BaTiO3 has the ideal paraelectric
cubic structure (space group Pm3m ) shown in Figure 1.1. Below 120C BaTiO3 assumes three
structures with slightly deformed unit cells, all three being ferroelectric with different directions of
the axis of spontaneous polarisation (polar axis). The three ferroelectric polymorphs differ in the
direction of displacement of the Ti-atoms from the centres of the octahedra (and the accompanying
lattice distortion):

(a) No displacement: cubic structure

(b) Displacement parallel to a cube edge: < 100 >, symmetry group P4mm;

(c) Displacement parallel to face diagonal of the cube:< 110 >, symmetry group Amm2;
(d) Displacement parallel to a body diagonal of the cube: < 111 >, symmetry group R3m.

(i) Which subgroup indices do the three space groups of the ferroelectric polymorphs display with
respect to the cubic group Pm3m?

(ii) How many orientation states of the twin domains occur for each polymorph? Which mutual
orientation do the domains exhibit for case (b)?

e Exercise 1.6.3.7. SrTiO3 has the cubic perovskite structure, space group Pm3m. Upon cooling below
105K, the coordination octahedra are mutually rotated and the space group is reduced to I4/mem;
¢ is doubled and the unit cell is increased by the factor of four. Can we expect twinned crystals of
the low symmetry form? If so, how many kinds of domains?

Determine the number and type of domains of the low-symmetry form of SrTiO3 using the computer
tools of the Bilbao Crystallographic server.
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Figure 1.1: (1) Perovskite structure (undistorted); (2) Distorted perovskite structure: Ti displacements
and lattice distortion parallel to a cube edge, and the related dipole generation in BaTiOg

e Exercise 1.6.3.8. Study the splittings of the Wyckoff positions for the group-subgroup pair P4mm
(No. 99)> Cm (No. 4) of index 4 by the program WYCKSPLIT.

e Exercise 1.6.3.9. Consider the group—supergroup pair H < G with H = P222, No. 16, and the
supergroup G = P422, No. 89, of index [i] = 2. Using the program MINSUP determine all supergroups
P422 of P222 of index [i] = 2. How does the result depend on the normalizer of the supergroup
and/or that of the subgroup.

1.6.4 Crystal-structure descriptions

e Exercise 1.6.4.1. Structure descriptions for different space-group settings

Problem 1.6.4.1A Scheelite (CaWOy)

Scheelite (CaWOy) is a mineral that crystallizes in the space group 74;/a (No. 88). In the
Inorganic Crystal Structure Database the following two descriptions of CaWOy can be found:

# (a) Origin choice 1 # (b) Origin choice 2

88 38

5.243 5.243 11.376 90 90 90 5243 5.243 11.376 90 90 90

3 3

Ca 1 4b 0.0000 0.0000 0.5000 Ca 1 4b 0.0000 0.2500 0.6250
W 1 4a 0.0000 0.0000 0.0000 W 1 4a 0.0000 0.2500 0.1250
(0] 1 16f 0.2413 0.1511 0.0861 O 1 16 f 0.1504 0.0085 0.2111

(1) Compare the two structure descriptions using the program SETSTRU.

(2) Use the program TRANSTRU to compare these two structure descriptions. Use as trans-
formation matrix the origin shift p = 0,1/4,1/8 to transform the structure described in
origin choice 1 into origin choice 2.

Hint: In order to compare the different data, the parameters of Structure (a) are to be trans-
formed to ’origin at center 2/m’, i.e. ORIGIN CHOICE 2.
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Problem 1.6.4.1B Zircon ZrSiO4 (Wondratschek, 2002)

(a) In R. W. G. Wyckoff, Crystal structures, vol. II, Ch. VIII, one finds the important mineral

zircon ZrSiO4 and a description of its crystal structure. Many rare-earth phosphates,
arsenates, and vanadates belong to the same structure type.

Structural data: Space group I4;/amd = Djj, No. 141,
lattice constants a = 6.60 A; c =588 A.

The origin choice is not stated explicitly. However, Wyckoft’s Crystal Structures started to

appear in 1948, when there was one conventional origin only (the later ORIGIN CHOICE
1, 4. e. Origin at 4m2).

Zr: (a) 0,0,0; 0,4 1; 103, 111

Si: (b)) 0,0,% 03,3 Lol L Lo

OI (h) (O,U,’U, 07’“’7“7 ’u,70777,7:60’l} 0’2+u - 0’%_’“7%_1];
U, 3,0+ 1; u, 5,0+ 1;) [and the same with (3, 3, 3)+].

The parameters u and v are listed with u = 0.20 and v = 0.34.
(b) In the Structure Reports, vol. 22, (1958), p. 314 one finds:

‘a = 6.6164(5) A, ¢ = 6.0150(5) A’

‘Atomic parameters. Origin at center (2/m) at 0,1 1. % from 4m2.
‘Oxygen: (0, y, z) with y = 0.067, z = 0.198.

Compare the two structure descriptions and check if they belong to the same structure type.

Which of the structure tools of the Bilbao Crystallographic Server could help you to solve the
problem?

Hint:In order to compare the different data, the parameters of Wyckoff’s book are to be
transformed to ‘origin at center 2/m’, i.e. ORIGIN CHOICE 2.

e Exercise 1.6.4.2. Equivalent structure descriptions

(a) CsCl is cubic, space group Pm3m, with the following co-ordinates

Atom Wyckoff Coordinate triplets

position x Y z
Cl la 0.0 0.0 0.0
Cs 10 0.5 0.5 0.5

How many equivalent sets of co-ordinates can be used to describe the structure? What are
their co-ordinates?

Hint: The number of different equivalent descriptions of CsCl is equal to the index of its space
group Pm3m(a, b, ¢) in the Euclidean normalizer Im3m(a, b, c), i.e. [i| = 2. The two different

descriptions are generated by the coset representatives of the decomposition of the normalizer
with respect to the space group.

(b) P(CCs)4[MoNCly] is tetragonal, space group P4/n, with the following co-ordinates:
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Atom Wyckoff Coordinate triplets

position Y z
P 2b 0.25 0.75 0
M 2 2 2 121
© ¢ 0-25 025 0 (H and C3 to C6 omitted)
N 2¢ 0.25 0.25 —0.093
C1 8¢ 0.362 0.760 0.141
C2 8¢ 0.437 0.836 0.117
Cl 8¢ 0.400 0.347 0.191

How many equivalent sets of co-ordinates can be used to describe the structure? What are
their co-ordinates?

Hint: The number of different equivalent descriptions of P(CgCs)4[MoNCly] is equal to the
index of its space group P4/n in the Euclidean normalizer. The different descriptions are
generated by the coset representatives of the decomposition of the normalizer with respect to
the space group. In the special case of P(CgCs)4[MoNCly| such equivalent descriptions can be
generated, for example, by the translations #(0,0,1/2) and #(1/2,1/2,0), and by a reflection
through a mirror plane at (z,x, z) represented by the coordinate triplet (y, z, z).

e Exercise 1.6.4.3. Isoconfigurational structure types (Koch & , Fischer, 2002)

Do the following three structures belong to the same structure type? Try to find analogous coordi-
nate descriptions for all three crystal structures.

1. KAsFg (ICSD: 59413)
Unit Cell 7.348(1) 7.348(1) 7.274(8) 90.90. 120
Space group R-3h

Atom Wyckoff Coordinate triplets

position x y z
K 3b 0.33333 0.66667 0.166667
As 3a 0 0 0
F 18f 0.1292(2) 0.2165(2) 0.1381(2)

2. BalrFg (ICSD: 803188)
Unit Cell 7.3965(1) 7.3965(1) 7,2826(1) 90. 90. 120
Space group R-3h

Atom Wyckoff Coordinate triplets

position =z Y z
Ba 3b 0.33333 0.6666 0.166666
Ir 3a 0 0 0

F 18f  0.0729(2)  0.2325(2) 0.1640(2)
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3. BaSnF¢ (ICSD: 33788)
Unit Cell 7.4279(2) 7.4279(2) 7.418(2) 90.90. 120
Space group R-3h

Atom  Wyckoff Coordinate triplets

position «x Y z
Ba 3a 0 0 0
Sn 3b 0 0 0.5
F 18f 0.2586(3) 0.8262(3) 0.0047(3)

Hint: Consider the Euclidean normalizer of symmetry group R3(hex) of KAsFg. The number of
different equivalent descriptions of KAsFg is equal to the index of its space group in the Euclidean
normalizer. The different descriptions are generated by the coset representatives of the decomposi-
tion of the normalizer with respect to the space group. In the special case of KAsFg such equivalent
descriptions can be generated, for example, by the translation (0,0,1/2), by a reflection through
a mirror plane at (z, —x, z) represented by the coordinate triplet (—y, —x, z), etc.

e Exercise 1.6.4.4. Crystal structure descriptions
In Inorganic Crystal Structure Database can be found several structure data sets of e-Fe;Ogs, all of
them of symmetry Pna2; (No.33). Compare the two structure descriptions listed in the Erercise
Data file and check if they belong to the same structure type.



Chapter 2

The irreps of the crystallographic point
groups

In this chapter the representations of the crystallographic point groups are dealt with. Basic definitions
and lemmata of the representation theory of finite groups are presented in Section 2.1. Section 2.2 contains
the derivation of the irreps of cyclic and non-cyclic Abelian groups. In Section 2.3 the direct products of
Co with the ‘basic’ groups of Section 2.4 are dealt with. Further developments of representation theory
necessary for the development of a general procedure for the irrep derivation is found in Chapter 2.5.

2.1 Representations

Definition (D 2.1.0.1) A group H of concrete elements (mappings, permutations, matrices, etc.) is
called a representation D (sensu lato) of the (abstract) group G if H is a homomorphic image of G. A
representation is called faithful if the homomorphism is one-to-one, i. e. is an isomorphism.

[ | Example. The 24 symmetry operations of a regular tetrahedron, the 24 permutations of its 4 ver-
tices, and the 24 matrices of the ‘general position’ of space group P43m, No. 215 of IT A are faithful
representations of the group 7T, the ‘tetrahedral group’. [

If the elements are matrices with the combination law of matrix multiplication then the representation
is called a representation (sensu stricto) or simply ‘representation’ and is here abbreviated as rep. Only
such reps by matrices are dealt with in this manuscript.

The rank of the matrices is called the dimension of the rep.

For convenience we repeat 3 important properties of reps:

1. Let G be a group and H a rep of G. If g, — hpy, gn — hy, and g, 9n = Gmn — hmn, then
by by, = by for all gy, 9n € G, i. e. the product of the images is equal to the image of the product.

2. A normal subgroup of G, called the kernel IC < G is mapped onto the unit element e € H.

3. The group H is a faithful rep of the factor group G/K but not necessarily isomorphic to a subgroup
of G.

Lemma 2.1.1 A rep of every group G is the identity rep which assigns the (one-dimensional matrix) 1
to each element of G. It is also called the ‘trivial rep’.

30
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2.1.1 Matrices

A matrix rep forms a group. Therefore, its matrices A are regular square matrices with finite orders and

11
|det A| = 1. An example for a matrix of infinite order is B = < 0 1 )

Definition (D 2.1.1.1) Equivalent matrices. Two matrices A and B are called equivalent if there is
a regular matrix X with X ' A X = B.

By this definition the set of all regular matrices is distributed to equivalence classes. Equivalent matrices
have the same order and the same eigenvalues, in particular the same trace and determinant. One can
understand equivalent matrices as different descriptions of the same mapping but referred to different
bases. Therefore, they are considered not to be essentially different.

Definition (D 2.1.1.2) A matrix A is called reducible if it is equivalent to a matrix of the form

R, S
( 01 R ) It is called fully reducible if S = O is the matrix consisting only of zeroes.
2

Lemma 2.1.2 Any matrix of finite order is fully reducible to components of dimension 1.

1 1
] Example.The matrix B = ( 0 1 > is reduced but is not fully reducible.

This is no contradiction because B is of infinite order. [ ]

2.1.2 General remarks on representations

Every group G has infinitely many reps. How can one get an overview on them 7

In the same way as for matrices the concepts: equivalent, reducible, and fully reducible can be defined
also for sets of matrices, including matrix groups. Here only the definition for the equivalence of reps of
groups is formulated. The other definitions are analogous.

Definition (D 2.1.2.1) Equivalent reps. Two reps DV and D® of a group G are called equivalent
if there is a regular matrix X which transforms the matrices A;(gy) € D simultaneously to As(gy) €
D@ X' Ai(gr) X = As(gy) for all elements gj, € G.

One can understand equivalent reps as different descriptions of the same group of mappings but referred
to different bases. Therefore, they are considered not to be essentially different.

Lemma 2.1.3 Each rep of a finite group is equivalent to a rep by unitary matrices.

Other than a single matrix, a rep is not necessarily reducible or fully reducible to components of dimension
1.

Definition (D 2.1.2.2) A set of matrices is called irreducible if it is neither reducible or fully reducible.

Lemma 2.1.4 Each rep of a finite group is either fully reducible or irreducible. A rep D which is fully
reduced into the reps D with matrices {D®(gi)} and D® with matrices {D®(gi)} is called the
direct sum D™ @ D@ of the reps D™ and D®. With D also D and D@ are reps of G.

The reduction can be continued until D is fully reduced into irreducible constituents D). Then the
number n of irreducible constituents in D is called the length of the reduction. The number of occurences
of an irreducible constituent D) in the reduction of D is called its multiplicity m;. Different reductions of
a rep have the same length, the same irreducible constituents up to the sequence and equivalence, and the
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same multiplicities. A fully reducible rep is determined by its irreducible constituents up to equivalence.

2.1.3 Irreducible representations (irreps)

The number of irreps of a finite group is relatively small; it is strongly restricted by two lemmata which
here can be only stated. They are more extensively dealt with in DP.

Lemma 2.1.5 The number of different irreps of a group G is equal to the number of conjugacy classes of

Gg.

The immediate consequence of this lemma is:

1. The number of irreps of an Abelian group G is equal to the order of G because each element g € G
forms a conjugacy class for itself.

2. The number of irreps of a non-Abelian group G is smaller than the order of G.

Lemma 2.1.6 The sum of the squares of the dimensions of the different irreps of a group G is equal to

the order of the group: |G| =n? +ni + ... n2.

For small group orders |G| these two lemmata determine the number and the dimensions of the irreps
uniquely. However, the 10 irreps of the group O x C3 of order 48 might be of dimensions 6 +2+ 1+ 1 +
1+1+1+1+1+1orb5+3+2+2+1+14+14+14+14+10rd4+4+3+14+14+1+1+1+1+1o0r
44+34+2+242+24+2+14+1+10r3+3+3+3+2+2+1+1+1+1if the structure of the group
is not taken into consideration.

A number of crystallographic point groups are direct products of groups, see Table 1.5.1 on p. 16. For
the construction of their irreps, the following theorem is very useful.

Lemma 2.1.7 The irreps D) (G) of the direct product of two groups G = H; X Hs can be constructed
from the irreps D (H;) and DY) (H,) in the following way: DU (G) = D (H;) @ DY (H,), with
the elements D) (g),.r.s = D@ (hy),, DY) (hy),s where g = hy hy. The indices p and r run from 1 to
dim(D¥ (#,)); the indices ¢ and s run from 1 to dim(DY)(#5)). Thus, the dimension of the irrep of G
is equal to the product of the dimensions of the irreps of H; and Hs. All irreps of G are obtained in this
way if D (H;) and DY) (#s) run through all irreps of H; and Ha.

] Example. The direct product (or Kronecker product) A® B of the two matrices A = < ? _01 )
0 0 -1
and B = 1 0 0 can be expressed by the
0 -1 0 00 0 0 1
0 O -1 0 0
. ( 0B (-1)B ) 0 0 0 10
super matriz A® B = - .
1B 0B 0O 0 =10 00O
10 0 0 0
0 -1 0 0 0
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2.2 The irreps of Abelian groups

Because finite Abelian groups are either cyclic groups or isomorphic to direct products of cyclic groups,
their irreps can be easily determined, once the irreps of the cyclic groups are known.

2.2.1 The irreps of cyclic groups

Lemma 2.2.1 The n irreps of a cyclic group C,, = (g) = {e, g, g%, ... , g" '} are given by the formula
D (g™) = [exp(27i (p— 1)/n)]™ = exp(2mim(p—1)/n), m,p=1, 2, ... ,n.
Crystallographic examples are C1, C2,C3, C4, and Cg.

] Examples.

Ci|e
The group table for C; is trivial. From it the table of irreps Al results.
Cyle a Co e a
The group table for Cois | e | e a |; the table of irreps is | D™
ala e D@ |1 -1
The irrep DY) is called A, the irrep D@ is B, see Altmann & Herzig (1994). ]

2.2.2 The irreps of direct products of cyclic groups

Each Abelian group is the direct product of cyclic groups. Because the irreps of cyclic group are one-
dimensional, the formula for the direct product of irreps in lemma 2.1.7 simplifies considerably. Consider
G =C, ®Cs, where C, = (a) and Cs = (b) are cyclic groups of orders r and s. Then the irreps of the
generators of group G are given by

D" (g, ) = [exp 2mi (p— 1)/r] and DP9 (e, b) = [exp 27mi (q — 1)/s]
which are obtained from the general element
DPD (g™ p*) = [exp 2mi (p— 1)/r]™ [exp 27i (g —1)/s]" of G by n = s and m = r.

The general element D(pq)(a’”7 b™) can be expressed by

exp 2nim(p—1)/rexp2rin(¢q—1)/s=exp 2ri(m(p—1)/r + n(qg—1)/s),
where m,p=1, ... ;,randn,¢g=1, ... ,s.

As a simple illustration of this general result one can consider the irreps of the group
D; = C, x Cs. Its irreps will be dealt with in an exercise.

2.3 The irreps of direct products with the group C,

All point groups which are direct products and play a role in 3-dimensional crystallography are direct
products with the group Cs, see Table 1.5.1 on p. 16. As we have seen, the group C, has two 1-dimensional
irreps with coefficients +1.

Let G = H x Cy and DY (H) be the irreps of H. Then, H x Cy ‘ He Y a
each irrep DY) of H gives rise to two irreps of G which are DO+ [ pO@ )
often designated by DY* and DY~ or DYW9 and DV ¥
(‘g’ = gerade; ‘v’ = ungerade).

DW-| p¥» _pG



34 CHAPTER 2. THE IRREPS OF THE CRYSTALLOGRAPHIC POINT GROUPS

Examples: irreps of centrosymmetric groups, see Figs. 1.5.1 and 1.5.2.

2.4 The irreps of solvable non-Abelian groups

The irreps of crystallographic non-Abelian groups are well known and treated in many books on repre-
sentation theory. The general approach for their determination is based on the theory of characters.

The irreps of the non-Abelian groups can also be derived using a procedure which is based on the solvabil-
ity of the crystallographic groups (cf. Section 1.5.2). For convenience, we list generating matrices for the
irreps of dimension larger than one of the groups D3, D4, T, and O in the conventional crystallographic
bases.

0 -1 0 1
D3 = 3m = 31m; D® =E: 3 = ; Mgy = .
1 -1 1 0

Referred to a Cartesian basis, the matrices of the 2-dimensional irrep of the group D3 are generated from

NG e et [ 12 —\/§/2.m7 0 1
o w0 e g () (0

5 -1 0 0 -1 -1
Dy = 4mm, D®) =E: 2, = i 41 = 3 My, =

= O
N———

-1 0 0 1.0 0 00 1
T=23DW=T: 2 = 0 -1 0 |;2,= 01 0 [|535.=]100
0 01 00 -1 010

The two-dimensional irrep E of O consists of the same matrices as D® of Ds. Its kernel is the subgroup
Dy <1 O. Therefore, the generators 2, and 2, are represented by the unit matrix of D®. The generator

3} .. of O replaces the generator 81 of D3, and m, of D is replaced by 2,, in group 432 or by m ..
in group 43m.
—1 0 0 -1 0
0=432DW=TW: 2 = 0 -1 0 |; 2,= 01 0 [
0 01 -1
0 0 1 0
01 0 0 —1
-1 0 —1
O=143m, DO =T? . 2, = 0 -1 D2, = :
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+ _
Sxxx™T = My, =

o = O
= o O
o O =
o = O
o O =
= o O

2.5 Further developments of representation theory

2.5.1 Definitions and general procedure
Subduced and induced representations

Let H be a proper subgroup of a group G: H < G. Given an irreducible representation (irrep) (T)(Q)
of G, one can construct a representation (rep) of H by considering only those matrices of D™ (G) which
belong to elements of #. This procedure is called subduction.

Definition (D 2.5.1.1) Consider the set of matrices which form an irrep of G. The set {D(g,)} =
D(T)(g) L H, g € H, is called the representation of H subduced from G.

Remark. The rep {D™(g;)} = D" (G) | H of H may be irreducible or reducible.

On the other hand, given an irrep DY )('H) of H one can construct a rep of G. This procedure is called
induction.

Consider the group-subgroup pair G > H and the coset decomposition of G relative to H:

Gg=gHUgHU ... Ugr H with g; = e. (2.5.1)
The number r of cosets is equal to the index r =[G : H| of H in G.

Let further DY) (#) be an irrep of # of dimension d.

Lemma 2.5.1 The set of (rd x r d) matrices

n DY (gl ggn)s ifgn'ggn=heH
D" (g) t s = ( e o (2.5.2)
0 if g, gon ¢ H
for all g € G forms a representation of G.
Definition (D 2.5.1.2) The representation of lemma 2.5.1 of G is called an induced rep of G.
Remark. The matrix elements of D’ "d(g) can also be written in the form
D™ (gt s = M(@)m,n DV (h)1.5, where g,.' g g, = h. (2.5.3)

The matrix M(g) is the so-called induction matriz. It consists of zeroes and ones only and is thus a
so-called monomial matriz, having exactly one ‘1’ in the mth row and nth column, determined by the
condition g;,' gg, = h € H. Correspondingly, the matrices D“Ld(g) have block structure with exactly
one non-zero block in every column and every row, where the block is the matrix D) (h), and h is fixed
by the above condition.

Equation 2.5.2 is sometimes written in the form

D™"(g) = M(g) ® DY)(n), (2.5.4)

where the sign ® is used for the construction in equation 2.5.4 although the matrix DU )(h) is different
for different positions in M.
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Conjugate representations and orbits

In general the induced reps are reducible. However, our aim is to obtain a procedure for the construction
of the irreps of a group G from the irreps of one of its subgroups H < G. For this we consider a pair
‘group—normal subgroup’ G > H.

Definition (D 2.5.1.3) The set of matrices (D*)(#)), = {D*)(g~" hg), h e H}, where g € G, g ¢ H,
forms a rep of H. It is called a representation conjugate to D(s)(H) by g€ gG.

The fact that (D(s)(H))g is a rep follows directly from its definition: (D(s)(hl))g (D@ (hy)), =
=D(g7 hg)D (g7 hg) =D (g7 i gg ' hg) = D (g i by g) = (D (1 h)),.

The conjugate rep (D(S)(H))g consists of the same set of matrices as D (H) but possibly assigned to
group elements different from those of D(*) (H). Therefore,

1. the dimensions of D*)(#) and (D) (#)), are equal;
2. (D®(H)), is an irrep if D) (H) is.

3. If (D(s)(’H))g is conjugate to D®)(H), then these reps may or may not be equivalent.

Definition (D 2.5.1.4) The set of all inequivalent irreps (D) (#)),, conjugate to D) (#) by all elements
g € G, is called the orbit O(D®)(#)) of D' (H) relative to G. The number of reps in the orbit is called
the length L of the orbit O(D®(H)). A rep D' (H) is called self-conjugate if the length of its orbit is L
=1.
Many of the possible conjugate irreps {(D(S) (H))g, 9 € G}, are equivalent. In particular, two irreps
(D®)(H)),, and (D (H))g;» conjugate to (D) (1)) by elements g; and g] from the same coset of the
decomposition of G relative to H: g = g; W', b € H, are equivalent:
(D) (h)g =D*(g; " hgj) =D (W~ g; " hg; W) = D (W=1) D) (g; " hg,) DW(H) =

= D@ (W)"1(D®)(h)),, D (K), for all h € H.
Thus, the complete orbit O(D(S) (H)) relative to G is obtained already by conjugation with the coset

representatives of G relative to ‘H. However, also irreps conjugate by elements from different cosets of H
relative to G may be equivalent, see Section (D 2.5.1.4).

By conjugation the complete set of irreps of H is distributed into orbits relative to G. The orbits are
disjoint because each of them contains mutually conjugated irreps of H.

Little groups, allowed irreps, and induction theorem

Given a group G > H and an irrep D) (H) of H, one can define the little group G° of D®)(#): it is the
subset of G that conjugates D) (#) onto an equivalent irrep.

Definition (D 2.5.1.5) The set of all elements g € G for which D(s)('H) is self-conjugate forms a group
which is called the little group G° = G*(D'®) (H)) relative to G.

Any element h € H leaves D) (H) equivalent under conjugation. Thus, H < G* follows. Moreover, H <1G*
because H <1 G holds: G > G° > H.

When QS(D(S)(H)) = G, all conjugate irreps of D®)(H) are equivalent. For example, the identity rep is
invariant under any conjugation. Therefore, its little group is always G. Also if H is in the centre of G,
then the G is the little group of every irrep of H. If the little group of D® (H) is the group H itself, then
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the rep of (D (%)), is non-equivalent to D (%), if g; is any coset representative different from the
identity element.

The set of non-equivalent irreps belonging to the orbit of D*)(#) is formed by the irreps (D) (#)),.
which are conjugate by the coset representatives gs € G of G relative to G°, The length of the orbit is the
index |G : G°|.

All members of an orbit have conjugate little groups: if G° is the little group of D (H), then géf) =
9:G° g7 ! is the little group of (D) (H)),,.

Our aim is to develop an induction procedure for the construction of the irreps of G, given the irreps
D®)(#). For that it is necessary to consider the induction from the irreps of the little group G*(D® (#)).
However, G° may have many irreps. Only some of them are of interest for the derivation of the irreps of
G. These are the so-called allowed irreps (known also as allowable irreps or small irreps) according to
the following definition.

Definition (D 2.5.1.6) An irrep DY (G*) = DY) (G*(D™)(H))) is called allowed if its subduction to the
group H contains the irrep D (H) of H.

Now one can state the theorem which permits the construction of the irreps of a group G provided
the irreps of a normal subgroup H <1 G are known. One considers the groups G and H and the orbits
O(DY)(H)) relative to G.

Lemma 2.5.2 Induction Theorem

(a) Let DY)(H) be an irrep from the orbit O(D'Y) (%)) with the little group ¢/ (DY)(H)) relative to
G. Then each allowed irrep D™ (G (DY) (H))) of G/(DY) (H))induces an irrep D"¥(G), whose
subduction to A yields the orbit O(DY) (#)).

(b) All irreps of G are obtained exactly once if the procedure described in (a) is applied on one irrep
DY (#) from each orbit O(DY)(H)) of irreps of H relative to G.

By this theorem the problem of determining the irreps of a group G from those of a normal subgroup
H <G is reduced to the determination of the allowed irreps of the little group G7(DY)(#)). For their
determination one can use the theorem stated above and the fact that the crystallographic point groups
G of 3-dimensional space are solvable groups (cf. Sections 1.5.2 and 1.5.3).

2.5.2 The special procedure for indices 2 and 3

If the group H is a normal subgroup of the group G of index 2 or index 3, then the little group QS(D(S) (H))
of any irrep of H is either the group G or its normal subgroup H because of the prime index. Two cases
are to be distinguished:

1. The orbit has the length 2 or 3, QS(D(S)(’H)) =H.

2. The orbit has the length 1, i. e. G3(D®) (%)) = G.

Orbits of irreps of lengths 2 and 3

One can now make use of the obtained results for those cases where the length of the orbit is not trivial,
i. e. where the orbit is not self-conjugate. For a normal subgroup of index 2 or 3 one can decompose G
into cosets relative to H, i.e. G = H U gH for index 2, and G = H U qgH U g*> H for index 3 with g € G
but g ¢ H.

The orbits of conjugate irreps have the form:
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e index 2: O(D(S)(H)) = {D(s)(H)7 (D(s) (H))q}
e index 3: O(D™(H)) = {D®(H), (DO (H))g, (D™ (M)}

In both cases there is just one allowed irrep which is the irrep D(s)(H) itself, because G°* = H. An irrep
of G can be induced from D(S)(H) following the general induction procedure, see Section 2.5.1.

For example, for index 2 the auxiliary table necessary for the construction of the induced irrep has the
form, cf. Section 2.5.1

glg| g'9 |g| g'lgg |M;#0

hle h e ehe=nh My
gl qg'h |q|gthg=(h,| Mo

q|le q q q* M
glglg=el|e e Moy

which results in the following matrices for the induced rep D’ "d(g):

D®)(h o 0 DV (g
Dlnd(h) _ ( ) ’ ; Dlnd(q) _ (q ) ) (255)
0 (D (h)), I o
Similarly, the general procedure reduces for index 3:
D®)(h) 0 0 0O 0 DY (¢
DM (h) = 0 (DY¥(n), 0] D™= 1 0 O . (25.6)
o 0 (D (h)), o I [0

From the induction theorem on p. 37 follows that each orbit of conjugate irreps of H yields exactly one
irrep of G.

Self-conjugate irreps

If the length of the orbit is 1, 4. e. the irrep of H is self-conjugate, then for the little group G° = G holds.
The general theorem is now not very useful as the allowed irreps of the little groups are irreps of G which
we want to determine. However, each self-conjugate irrep of H gives rise to |G/H| irreps of G with the
same dimension as D*)(#) has. The matrices of the irreps D)™ (G), m =1, 2or m = 1, 2, 3, derived
from the self-conjugate irrep D(S)(’H), are given as follows:

index 2
D@1 (p) = DW2(h)y = DO (h), he H DWl(q)=-D®2(g)=U (2.5.7)
where U is determined by the conditions
D® (g hg)=U D (h) U, heH,; U?=D¥ (g%
index 3
D®™h)y =D®(h), m=1,2,3 D®q) =eD®?(q)=D®3(q)=U (2.5.8)

with € = exp 2mi/3, where U is determined by the conditions

D¥(q 7 hg)= U DY U, he H and U®=D®(g%)
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2.6 Exercises

2.6.1 General introduction to group representations

e Exercise 2.6.1.1. Faithful representation of jmm

(a) Construct a two-dimensional faithful representation D of Jmm starting from the matrices of

0 -1 -1 0
its generators: D(4) = D(m =
g ( ) ( 1 0 ) ( 100) ( 0 1 )

(b) Determine the matrices of the two-dimensional faithful representation D’ of 4mm with respect
to the new basis a’ = (a+b) and b’ = L(—a+b).

(¢) Show that the two representations D and D’ of the group 4mm determined in (a) and (b)
are equivalent, 4. e. show that there exists a matrix X such that X 'D(g)X = D’(g), with

g € dmm.

Hint: The determination of X such that D’ = X 'DX is equivalent to determine X such that
XD’ = DX with the additional condition that det X # 0.
e Exercise 2.6.1.2. Irreps of the cyclic group Cy

The cyclic group C; of order 4 is generated by the element < g >. Two of the following three
representations of Cy are equivalent:

D1(9)=<é _02> Dz(g)=<3 _OZ> D3(9)=<(1) _01>

Determine which of the two are equivalent and find the corresponding similarity matrix. Can you
give an argument why the third representation is not equivalent?

e Exercise 2.6.1.3. Schur Lemma

(i) Determine the general form of the matrix B that commutes with the matrices of all elements
of the two-dimensional irrep E of 4jmm: E(g)B = BE(g), g € 4mm (x), where

E(4) = < (1) _01 ) and E(myg) = < _01 (1) )

Hint: To determine B it is sufficient to consider the commuting equations () for the generators
of 4mm.

(ii) Show that the irreps of Abelian groups are one-dimensional.
e Exercise 2.6.1.4. Number and dimensions of irreps

1. Determine the number and dimensions of the irreps of group 222. Can you write down the
irrep table of the group 2227

2. Determine the number and dimensions of the irreps of the group 4mm. What about the irreps
of 4227 And those of 4/mmm?

3. Determine the number and dimensions of the irreps of the group 3m. What about the irreps
of 32?7 And those of 3m?

e Exercise 2.6.1.5. Character tables of point-group irreps

1. Determine the character table of the group 4mm. What about the character table of 4227
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2. Consider the character table of the group 432. Determine the characters of the two-dimensional

irrep E.

432 | 1(1) 2100(3) 2110(6) 37, (8) 4y (6)
A, 1 1 1 1 1
A, 1 1 -1 1 -1
E ? ? ? ? ?
T, 3 -1 -1 0 1
T, 3 -1 1 0 -1

e Exercise 2.6.1.6. Consider the group 222 and its irreps. Show that the following matrices form a
representation of 222 that is reducible:

D(e) = D(2001) = < ; (1) > and D<2100> = D<2010> = ( (1) ; )

1. Decompose the reducible representation into irreps of 222;
2. Calculate the matrix S that reduces the reducible representation D into irreducible constituents
D;: D(G)S = S[®D;(G)].
e Exercise 2.6.1.7. Vector representation of 4mm
1. Construct the vector representation of the point group 4mm from the ‘general position’ of the
space-group table of P/mm in IT A (cf. Fig. 77, page 77).

2. What is the difference between this vector representation and that can be obtained from the
the space-group data of P4bm in IT A (cf. Fig. 4.2, page 56)7

3. Is the vector representation of point group 4mm reducible or irreducible? Determine the general
form of a matrix that commutes with all matrices of the vector representation of Jmm.

4. If it is reducible, decompose it into irreducible constituents.

o Exercise 2.6.1.8. Consider the character table of the irreps of the group 422 and the following three
reducible representations of the group specified by their characters:

Y1(e) = 6, ¥1(2100) = 2, ¥1(4) = ¥1(2100) = ¥1(2110) =0
Pa(e) = 10, 11(2100) = 6, Y2(4) = ¥1(2100) = —2 and ¥P2(2110) =0
Y3(e) = 11, ¥1(2100) = 7, ¥1(4) = ¥1(2100) = ¥1(2110) = —3

Determine the decomposition of the reducible representations into irreps of 422.

2.6.2 Direct product of irreps and subduced representations

e Exercise 2.6.2.1. Kronecker product of matrices

Calculate the Kronecker products A Q) B and B ) A of the following two matrices
1 1 2

-1 -2
A:( )andB: 1 -1 1
1 2
0o 2 -1

What is the trace of the matrix A Q) B? And of B Q) A?
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e Exercise 2.6.2.2. Irrep multiplication tables

1. Construct the irrep multiplication table of the group 4mm

2. Construct the irrep multiplication table of the group 3m
e Exercise 2.6.2.3. Symmetrized and anti-symmetrized irreps squares

1. Calculate the characters of the symmetrized {E}? and antisymmetrized [E]? squares of the
two dimensional irreps of 4mm. If { E}? and/or [E]? are reducible, decompose them into irreps
of 4mm.

2. The same for the two-dimensional irrep of the group 3m.
e Exercise 2.6.2.4. Irreps of direct-product groups
1. Determine the character table of the group 222 = 2 x 2’ from the character table of the cyclic
groups 2.

2. Determine the character table of the group 4/mmm = 422 x 1 starting from the character
tables of the groups 422 and 1.

3. Determine the character table of the group 4/m = 4 x 1 starting from the character tables of
the cyclic groups 4 and 1.

4. determine the character table of the group 6 = 3 x 2 from the character tables of the cyclic
groups 3 and 2.
e Exercise 2.6.2.5.
Consider the two-dimensional irrep E of point group 4mm (see Problem 2.6.1.7 and Section 4.4.2)
and its subgroup 4.
1. Is the subduced representation E | 4 reducible or irreducible ?
2. If reducible, decompose it into irreps of 4.
3. Determine the corresponding subduction matrix S, defined by
S (E | 4)(h) S =@m;D'(h), he 4.
e Exercise 2.6.2.6.
Consider the two-dimensional irrep E of point group 4mm (see Problem 2.6.1.7 and Section 4.4.2)
and its subgroup mm2.
1. Is the subduced representation E | mm2 reducible or irreducible 7
2. If reducible, decompose it into irreps of mm2.
3. Determine the corresponding subduction matrix S, defined by
S~ (E L mm2)(h) 8 = @m; D'(h), h € mm2.
e Exercise 2.6.2.7.
Construct the general form of the matrices of a representation of G induced by the irreps of a
subgroup H < G of index 2.
e Exercise 2.6.2.8.

Construct the general form of the matrices of a representation of G induced by the irreps of a normal
subgroup H <1 G of index 3.
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o Exercise 2.6.2.9.
Determine the representations of the group 4mm induced from the irreps of its subgroup {1, mg10}
(for the necessary data see Sections 4.3 and 4.5). What are the dimensions of the induced represen-
tations of 4mm? Are they reducible or irreducible?

e Exercise 2.6.2.10.

Consider the two-dimensional irrep E of point group 4/mm (cf. Section 4.4.2):

1. Is the direct-product representation E ® E reducible or irreducible?
2. If reducible, find its decomposition into irreps of 4mm;

3. If the functions {f;, fy} form the basis of E, can you guess if it would be possible to construct
invariants from the functions of the product carrier space {f2, f. fy, fyfz, fy2}7

4. If possible, how many invariants can be constructed, and what are the corresponding linear
combinations of f;f;?



Chapter 3

Irreducible representations of space
groups

For the derivation of all irreps of a space group we use the method of constructing the irreps of a group G
from those of a normal subgroup H <G (can be demonstrated in a straightforward way by the derivation
of the irreps of point groups). The main steps of the procedure are:

1. Construct all irreps of H

2. Distribute the irreps of H into orbits under G and select one member of each orbit

3. Determine the little group for each selected irrep of H

4. Find the allowed (small) irreps of the little group

5. The irreps of G are constructed from the allowed irreps of the little group by induction.

The set of all irreps of G is complete if the induction is applied to all allowed irreps of the little group for
each selected irrep of H.

The translation group T is a normal subgroup of every space group. The irreps of 7 and their distribution
into orbits will be discussed in Section 3.1 and Section 3.2. The determination of the little groups of the
selected irreps (step 3) and the induction procedure (step 5) are dealt with in Sections 3.2 and 3.4 The
most involved step in the above procedure is the determination of the allowed irreps of the little group
(step 4). In most books on irreps of space groups this difficulty is removed by applying the theory of
the so-called projective reps. Here we have preferred another approach for the construction of the small
irreps. It is based on the fact that all space groups are solvable groups, i. e. for every space group one can
construct a composition series

GoHIiD>Hy ... T

such that all factor groups H;/H;+1 are cyclic groups of order 2 or 3 (for details, ¢f. Section 1.5.2).
For the space-group representation theory we follow the terminology of BC and CDML.

3.1 Representations of the translation group 7

Let G be referred to a primitive basis. The infinite set of translations (I, t), with ¢ being the column of
integers (n1, na, n3) is based on discrete cyclic groups of infinite order. For the following, this group will

43
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be replaced by a (very large) finite set in the usual way: One assumes the Born-von Karman boundary
conditions

to hold, where ¢; = (1,0,0), (0,1,0), or (0,0,1) and N; is a large integer for ¢ = 1, 2, or 3, respectively.
Then for any lattice translation ( I, ¢)

(I, Nt) = (I, o) holds, (3.1.2)

where Nt is the column (Nyny, Nong, N3nz)T (here ()T stands for transposed relative to rows). If the
(infinitely many) translations mapped in this way onto (I, o) form a normal subgroup 7 of G, then there
exists a factor group G’ = G/T of G relative to T with translation subgroup 7' = T /77 which is finite
and is sometimes called the finite space group.

Only the irreducible representations (irreps) of these finite space groups will be considered. The definition
of space-group type, symmorphic space group, etc. can be transferred to these groups. Because T is
Abelian, 7" is also Abelian. Replacing the space group G by G’ means that the particularly well-developed
theory of representations of finite groups can be applied. For convenience, the prime ' will be omitted
and the symbol G will be used instead of G’, 7’ will be denoted by 7 in the following.

Because T, i.e. former 77, is Abelian, its irreps I'(7) are one-dimensional and consist of (complex) roots
of unity. Due to the equations (3.1.1) and (3.1.2) the irreps I'"*%29%[(I, ¢)] of T have the form
n3 )

T91920 ([, £)] — o201 Ry +a2 72 +as 1 7 (3.1.3)

where ny, ¢;,=0,1,2, ... ,N; =1, j=1,2,3, ng, and ¢; are integers.

Given a primitive basis aj, as, ag of L, mathematicians and crystallographers define the basis of the
reciprocal lattice af, a%, a} (or basis of the dual lattice ) L* by

a; - aj; = d;j, (3.1.4)

where a-a* means the scalar product between the vectors, and d;; is the unit matrix (see, e.g., International
Tables for Crystallography, Vol. B (2008), Subsection 1.1.3). Texts on physics of solids redefine the basis
aj, a3, aj of the reciprocal lattice L, lengthening each of the basis vectors a; by the factor 2m. Therefore,
in the physicist’s convention the relation between the bases of direct and reciprocal lattice reads, cf. BC,
p. 86:

a; a; = 271'(51'_7'. (315)

In the present chapter only the physicist’s basis of the reciprocal lattice is employed, and hence the use
of aj should not lead to misunderstandings. The set of all vectors K!,

K= Kla’{ + Kzﬁ; + K3a§, (316)

K; integer, is called the lattice reciprocal to L or the reciprocal lattice L* 2.
If one adopts the notation of ITA | the basis of direct space is denoted by a row (a;)=(a;, ag, as). For
the reciprocal space, the basis is described by a column (a})T= (a, a3, a3)T.

1In crystallography vectors are designated by small bold-faced letters. With K we make an exception in order to follow
the tradition of physics. A crystallographic alternative could be t*.

2The lattice L is often called the direct lattice. These names are historically introduced and cannot be changed anymore,
although equations (3.1.4) and (3.1.5) show that essentially none of the lattices is preferred: they form a pair of mutually
reciprocal lattices.
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As is well known, the Bravais type of the reciprocal lattice L* is not necessarily the same as that of
its direct lattice L. If W is the matrix of a (point-) symmetry operation of the direct lattice, referred
to its basis (a;), then W1 is the matrix of the same symmetry operation of the reciprocal lattice but
referred to the dual basis (a})T. This does not affect the symmetry because in a (symmetry) group with
each element its inverse also belongs to the group. Therefore, the (point) symmetries of a lattice and its
reciprocal lattice are always the same. However, there may be differences in the matrix descriptions due
to the different orientations of L and L* relative to the symmetry elements of G and due to the reference
to the different bases (a;) and (a})™. For example, if L has the point symmetry (Hermann-Mauguin
symbol) 3ml1, then the symbol for the point symmetry of L* is 31m and wvice versa.

Let (a;) be a conventional basis of the lattice L of the space group G. With the relations (3.1.5), k; = ¢; /Ny,
and k = Zle k;al, equation (3.1.3) can be written

r9%25((1,t)] = T¥[(I,t)] = exp — i(kt). (3.1.7)

Equation (3.1.7) has the same form if a primitive basis (p;) of L has been chosen. In this case the vector
k is given by k = 2?21 kpi Py .

Let a primitive basis (p;) be chosen for the lattice L. The set of all vectors k (known as wave vectors)
forms a discontinuous array. Consider two wave vectors k and k/ = k + K, where K is a vector of the
reciprocal lattice L*. Obviously k and k’ describe the same irrep of 7. Therefore, to determine all irreps
of T it is necessary to consider only the wave vectors of a small region of the reciprocal space, where
the translation of this region by all vectors of L* fills the reciprocal space without gap or overlap. Such
a region is called a fundamental region of L* (the nomenclature in literature is not quite uniform. We
follow here widely adopted definitions).

The fundamental region of L* is not uniquely determined. Two types of fundamental regions are of interest
in this chapter:

1. the first Brillouin zone or simply Brillouin zone, abbreviated BZ, is that range of k space around
o for which | k | <| K — k | holds for any vector K € L* (Wigner-Seitz cell or domain of influence
in k space). The Brillouin zone is used in books and articles on irreps of space groups;

2. the crystallographic unit cell in reciprocal space, for short: unit cell, is the set of all k vectors with
—1/2 < k; < 1/2. Tt corresponds to the unit cell used in crystallography for the description of
crystal structures in direct space. However, the center is here the o vector.

3.2 Orbits of irreps of 7 and little groups
In the previous section the irreps of 7 have been determined. These irreps have now to be classified into
orbits relative to G.

By definition the orbit of an irrep I'¥(7) includes all non-equivalent irreps I‘k,(’T) for which there exists
a matrix-column pair (W, w) of g € G such that

K (I, t) = TK(W, w)~Y(I, t)(W, w)), (I, t) € T.
From (W, w)~! (I, t) (W, w) = (I, W™ 't) follows
K (I, ¢) = TK(I, W ') = exp —(ik (W' t)) = exp(—i (k W) t). Thus,

K=kW'+K, Kc L (3.2.8)
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By the lattice vector K € L* the vector k’ is brought back to the fundamental region in case it would
be outside otherwise.

Let k be some k vector and W be the matrices of G.

Definition (D 3.2.0.1) The set of all matrices W € G which leave the vector k invariant or change it to
an equivalent one, i. e.

k=kW+K, KeL* (3.2.9)

=k
forms a group which is called the little co-group G of k. The vector k is called a general k vector if
Gk = {T}; otherwise GX > {T}, and k is called a special k vector.

The little co-group G ¥ is a subgroup of the point group G. Consider the coset decomposition of G relative
to G K.

Definition (D 3.2.0.2) If {W,,} is a set of coset representatives of G relative to GX, then the set
(k) = {kW,, + K} is called the star of k and the vectors k W, + K are called the arms of the star.

Here again the lattice vector K is necessary if k W, is outside the fundamental region.

An orbit of I‘k(T) relative to G comprises all irreps rk’ (T) with k’ belonging to xk. From the classification
of all k vectors into stars follows the distribution of the irreps of 7 into orbits relative to G. The length

of an orbit O(TK(T)) is equal to the number of arms of xk which is the index of the little co-group ?k
of k in the point group G.

If k is general, then there are |G| vectors (arms) from the star of k in each fundamental region. If k is
=k

special with little co-group G > {Z}, then the number of arms of the star of k in the fundamental region

=k

is [G|/1G |

According to the induction theorem, lemma 2.5.1, in order to obtain each irrep of G exactly once, one

needs one k vector per star. A simply connected part of the fundamental region which contains exactly

one k vector of each star of k, is called a representation domain ® . Thus, for the determination of all
irreps of G it is sufficient to consider the k vectors belonging to the representation domain.

We are now in the position to define the little group Qk if the space group G, its translation subgroup
T, and an irrep I‘k(T) are given. The little group is a space group and consists of all those elements of
G whose rotation parts W leave either k unchanged or invert it into an equivalent vector.

Definition (D 3.2.0.3) The group of all elements (W, w) € G for which W € GX, is called the little
group gk of k.

3.3 Allowed irreps of the little group

The irreps of space groups are obtained by induction from the allowed irreps of the little groups gk of
k. If Dk’i(gk) is an allowed irrep of gk, then Dk’i(I, t) =exp(—ikt)I holds. The matrix I is the
identity matrix with dim(I) = dim(Dk’i(Qk)).

The determination of the allowed irreps is trivial for a k vector in general position. Then its star contains
|G| arms, i. e. its little group is the translation group. For a given k vector it has just one allowed irrep,
namely the one which belongs to the k vector considered. Thus, every star in a general position contributes
exactly one irrep of G.
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=k.i .
Under certain conditions one can express the allowed irreps of Qk in terms of the irreps D * of the little
=k .
co-group G for a special k vector.
Lemma 3.3.1 Let one of the following two conditions be satisfied

1. k is a vector of the interior of the BZ
2. gk is a symmorphic space group.
Then the number of non-equivalent allowed irreps DX ¥ of the little group gk is the same as the number

=k, i =k
of non-equivalent irreps D " of the little co-group G , and their matrices are of the form:

DX(W, w) = exp—(ikw) D™ (W), (W, w) € GK.

In this way the allowed irreps of Qk are expressed by irreps of the point groups. Only certain stars on the
surface of the BZ give rise to difficulties for non-symmorphic space groups. These cases can be solved by
the method of deducing all irreps of a group G from the irreps of a normal subgroup H <1 G with index
2 or 3. Since the little groups are space groups and thus solvable groups, one can construct for them
composition series with factor groups of order 2 or 3. The irreps of any non-symmorphic space group
can be constructed step by step following the chain of normal subgroups, starting from the irreps of that
symmorphic subgroup Hg of G which has the smallest index. For each space group there is always at least
one symmorphic subgroup in the composition series from 7 to G: its translation subgroup 7.

Only the allowed irreps of the little group gk are necessary for the construction of the irreps of G.
However, it is straightforward to show that the allowed irreps of a symmorphic subgroup H%f < Qk yield
allowed irreps of Qk. On the other hand, non-allowed irreps of Hok < Qk yield non-allowed irreps of Qk.

In other words, in order to obtain all allowed irreps of gk it is only necessary to consider the allowed
irreps of the symmorphic subgroup ’H%)(.

Consider a group-subgroup chain Qk > ”H%)( with index 2 or 3. The irreps of gk are obtained from those

of H%{ by the formulae discussed in Section 2.5.2. The allowed irreps of ’H%)( are those whose matrices of
the translation elements are of the form:

k,i .
Dﬁk(I, t) =exp—(ikt) 1. (3.3.10)

0

For self-conjugate irreps allowed irreps of 7—[%){ yield allowed irreps of Q’k, see equation 2.5.7 and 2.5.8.

For induction from non-self-conjugate irreps of ’H}){, see equations 2.5.5 and 2.5.6, the above result is also
valid

(D;;’{(L )W w) = Dz;’{[(W, w) " (I ) (W, w)] = exp—(i (k W t)) I =exp—(ikt) I, (3.3.11)

0 0

because the coset representative (W, w) of Qk relative to 7—[%){ leaves the k vector invariant (up to a lattice
vector K € L*). From the discussion is also clear that non-allowed irreps of ’H%)( give rise to non-allowed
irreps of gk.

3.4 Induction procedure

All irreps of a space group G are obtained by taking a vector k from each star and inducing irreps of G
from all non-equivalent allowed irreps DK% of the corresponding little group gk. If dim(Dk’i) = r and
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s is the order of the star of k, then the induced irrep D*k’i(g) has the dimension r s. The matrices of
D*k’i(g) can be arranged in blocks M; ; of dimension r, with one non-zero block in each row or column
of blocks.

If we choose the elements (W, w;), ¢ =1, ... ,s as representatives of the cosets of G relative to gk:
G=GXU(Wy wy)G¥U ... U(W,, w,)GX,

then the block i j is zero unless (W, w;)~' (W, w) (W, w;) € gk.

As was already discussed in Section 3.3, the little group Qk of k is the translation group 7 if k is a vector
of general position. Then T¥(T) is the only allowed irrep.

The corresponding induced irrep of G has a dimension equal to the length of the orbit +k = {ky, ko, ..., k,},

The representation matrices corresponding to the elements of 7 are diagonal matrices, where the elements
are the irreps of 7 belonging to the orbit of k.

The representation matrices for any element of G and arbitrary k vector are obtained by the general
induction method, see Section 2.5.1. For better efficiency it is advisable to calculate the non-zero blocks
of the induction matrix first. Very often, for a better overview of the irreps of G, their matrices are
presented by the non-zero blocks of the induction matrix and the corresponding submatrices of the little-
group irreps.

3.5 Exercises

3.5.1 Irreducible representations of space groups

e Exercise 3.5.1.1. Irreducible representations of the group P4mm(99)
Consider the k-vectors I'(000) and X (030) of the group P4mm.

1. Determine the little groups, the k-vector stars, the number and the dimensions of the allowed
little-group irreps, the number and the dimensions of the corresponding full irreps of the group
P4mm. Construct the allowed little group irreps of P4mm for I'(000) and X(O%O);

2. Calculate a set of coset representatives of the decomposition of the group P4mm with respect
to the little groups of the k-vectors I'(000) and X(O%O), and construct the corresponding full
space group irreps of P4mm.

e Exercise 3.5.1.2. Trreducible representations of the group P4bm(100)
Consider the k-vectors I'(000) and X(030) of the group P4bm.
1. Determine the irreps of space group P4bm, k = I'(000). Is there a difference to the irreps of
space group P4mm, k = T'(000) ?

2. Determine the allowed little-group irreps of space group P4bm for k=X (0

(050). Compare the
obtained irreps with those obtained in the exercise with P/mm, k = X(O%O

1
2
).
e Exercise 3.5.1.3. Space-group irreps for a general k-vector

Consider a general k-vector of a space group G. Determine its little co-group, the k-vector star.
How many arms has its star? How many full-group irreps will be induced and of what dimension?
Write down the matrix of the full-group irrep of a general k-vector for a translation, t € Tg.

e Exercise 3.5.1.4. Irreducible representations of the group P2;8 (198)
Consider the k-vectors I'(000) and k = R (34 3) of the group P2;3.
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1. Determine the little groups, the k-vector stars, the number and the dimensions of the little-
group irreps, the number and the dimensions of the corresponding irreps of the group P2; 3.

Construct the little group irreps of P23 for I'(000) and k = R(341);

2. Calculate a set of coset representatives of the decomposition of the group P2; 3 with respect

to the little groups of the k-vectors T'(000) and k = R(111), and construct the corresponding

222
full space group irreps of P2; 3.

3.5.2 Tools of the Bilbao Crystallographic Server for Space-group Irreps
e Exercise 3.5.2.1.
1. Obtain the irreps for the space group P4mm(99) for the k-vectors I'(000) and X (050) using

the program REPRES. Compare the results with the solutions of Problem 3.5.1.1.

2. Use the program REPRES for the derivation of the irreps of a general k-vector of the group
P/mm and compare the results with the results of Problem 3.5.1.3.

3. Use the program Representations SG for the derivation of the irreps for the k-vectors I'(000),
X(O%O) and of a general k-vector of the group P4mm and compare the results with the results
of Problems 3.5.1.1 and 3.5.1.3.

e Exercise 3.5.2.2.
1. Obtain the irreps for the space group P4bm(100) for the k-vectors I'(000) and X(030) using

the program REPRES. Compare the results with the solutions of Problem 3.5.1.2.

2. Use the program REPRES for the derivation of the irreps of a general k-vector of the group
P/bm and compare the results with the results of Problem 3.5.1.3.

3. Use the program Representations SG for the derivation of the irreps for the k-vectors I'(000),
X(O%O) and of a general k-vector of the group P4mm and compare the results with the results
of Problems 3.5.1.2 and 3.5.1.3.

e Exercise 3.5.2.3.
The star of the wave vector X(300) in the cubic group Pm-3m(221) consists of three arms: *X =
{(200), (030), (003)}
(i) Determine the wave-vector correlations (splttings) of k-vector star *X for the group-subgroup

chain Pm3m(a,b,c) > Pd4mm(a,b,c)

(ii) How the wave-vector correlations of *X change if unit cell of the low-symmetry group is doubled
along c axis, i. e. the group-subgroup chain is of the type Pm3m(a,b,c) > P4mm(a,b,2c)

(iii) Compare your results with the output of the program CORREL .

e Exercise 3.5.2.4.

Using the program COMPATIBILITY RELATIONS determine the connectivity of the electronic energy
bands of Ge, symmetry group Fd3m(227), between the high symmetry points T'(000) and X(%O%)
over the symmetry line A(uOu) (cf. BZ data of Fd3m provided by the program KVEC).

e Exercise 3.5.2.5.
(a) Consider the space group P4mm and its k-vector X (010). Determine the wave-vector selection

rules for the product of the k-vector stars: *X(030) ® *X(030).

(b) Consider the space group P4/mmm(No. 123) and its k-vector X(040) and A(0,0.27,0). De-
termine the wave-vector selection rules for the product *A(0,0.27,0) ® *X(010).

(¢) Compare your results with the output of the program DIRPRO .
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Appendix

The Appendix contains the procedures and necessary basic data for the exercises: multiplication tables,
matrices, character tables, etc.

4.1 Procedure for the construction of the irreps of space groups.
The main steps for constructing the irreps of space groups can be summarized as follows

1. Space-group information

(a) Decomposition of the space group G in cosets relative to its translation subgroup 7T, see IT A
(1996)
G=TUWo, wa)TU ... U(W,, w,)T

(b) Choice of a convenient set of generators of G, see IT A (1996)

2. k-vector information

(a) Choice of a k vector (from the rep domain ® of the BZ). The coefficients of the k vector have
to be referred to the dual basis of that basis relative to which the space group is defined:

_k
(b) Determination of the little co-group G of k:
G5 (W.cG: k=kW,+K, KeL*}
(c) Determination of the k-vector star (k)
x(k) = {k, ko, ... ,ks}, withk =k W, j =1, ... s, where W; are the coset representatives
_ ] _k
of G relative to G .
(d) Determination of the little group Qk
~ ~— _k
(]k:{(Wi, 'wi)e(]: W,eg }
(e) Decomposition of G relative to Qk
Ai obvious choice of coset representatives of G relative to gk is the set of elements {q; =
(Wl,wl),z: 1, ey S}
_ - =k
where W; are the coset representatives of G relative to G

G =GXU (W, w)GKU ... (W, w,)GK

3. Allowed irreps of gk
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(a) If gk is a symmorphic space group or k is inside the BZ, then the non-equivalent allowed irreps

Dk’i of gk are related to the non-equivalent irreps ﬁk’i of ?k in the following way:
DX (W, @) = exp —(ikw,) D™ (W)
(b) If gk is a non-symmorphic space group and k is on the surface of the BZ, then:

i. Look for a symmorphic subgroup ”H(l)( (or an appropriate chain of normal subgroups) of

index 2 or 3

ii. Find the allowed irreps D;(_l’i of 7—[%)(, i. e. those for which is fulfilled
0

D}’,{_[’i(I, t) = exp —(i kt) I and distribute them into orbits relative to gk
0

iii. Determine the allowed irreps of Qk using the results for the induction from the irreps of
normal subgroups of index 2 or 3

4. Induction procedure for the construction of the irreps D*k’i of G from the allowed irreps DK of g

The representation matrices of D*k’i(g) for any element of G can be obtained if the matrices for
the generators {( W, w;), I =1, ..., k} of G are available (step la).

(a) Construction of the induction matrix.
The elements of the little group gk = {(W;, w;)} (step 2d) and the coset representatives

{q1, ...,qs} of G relative to gk (step 2e) are necessary for the construction of the matrix
M(W,, w;)
‘ (Wi, wy) ‘ a | g ‘ g (Wi, w) ‘ g, (Wi, wi)g ‘ MWy, wi)ij #0 ‘

(b) Matrices of the irreps Dk of g:
Dk (W, W)ip, ju = M(W 1, w) g D™ (W, @) 00,
where (Wp, w,) =q; (W, w)q;.

All irreps of the space group G for a given k vector are obtained considering all allowed irreps
pk.m of the little group Qk obtained in step 3.

4.2  Induction procedure for the case of normal subgroups of
index 2 or 3

Start from the irreps D of a normal subgroup H < G, where |G/H| =2 or 3.
1. Characterize the group-subgroup chain G > H by

(a) choice of appropriate generators for H and G

(b) decompose G into cosets relative to H with coset representative g: g € G but g ¢ H
i. G =HUQqgH for index 2
ii. G =HUqgHUQqg*H for index 3.

2. Determine the orbits of irreps of H relative to G
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e index 2:

(D*(H))q} (self-conjugate)

e index 3:

— O(D*(H)) = {D*(H) = (D*(H))q = (D*(H))q} (self-conjugate)
— O(D*(H)) = {D*(H), (D*(H))q, (D*(H))q2}

3. Construct the irreps of G

e index 2
— {D°(H)}
D'(h)=D*(h)=D"(h), he # D'(q)=-D*(q)=U
where U is determined by the conditions
D*(qg'hq)=U'D*(h) U, heH,; U’ = D*(¢%)

— {D*(H), (D*(H))q}

e index 3
- {D*(H)}
D™(h) = D?*h), m=1, 2,3 D™(q) =wmU
where U is determined by the conditions
D(qg thq)=U'D*(h) U, heH; WAU? = D*(¢°)

— {D*(H), (D*(H))q, (D*(H))g}
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4.3 Multiplication (Cayley) tables
4.3.1 Symmetry elements and multiplication table of the group 3m
(-1,-1) mo1 .
’ 3m H 18 37 | my mpo my
MO~
L 1 1 3t 3 | m1 myg my
.................... b ' 3T || 3¢ 3~ 1 | mpr my My
/ k 3" 3~ 1 3+ mio Moy My
. M || m1 myg mey | 1 3T 37
myo || Mo Mo1 M1 | 37 1 3t
mo1 Mot || Mor myy myp | 37 37 1
4.3.2 Symmetry elements and multiplication table of the group 4mm
myg Mo My ’ 4mm H 1 2 4 4 ‘ M1 Mo M1 M
\ » / 2 4T 4 [myy my My ompy
-1,-1
3 2 2| 2 47 4T | myy mer mi myg
4+ 4+ 4~ 2 1 mi mi1 Mg Moy
o §bm10 4~ 4~ 4+ 1 2 myp My Mpr My
Moy || Mor Mo M1 My | 1 2 4 4t
. . mio || Mo Mo1 M1 My | 2 14t 4
1-1 a L1 m || M1 mi omor myo | 47 47 2
m,, mg, m3 my || my mg omig mer | 47 4T 2

4.4 Matrix groups; generating matrices

4.4.1 Matrices of the group 3m

() ()

0 -1 -1 1
mi = y Mo = ymMo1 =
-1 0 0 1




54

4.4.2

1 =

(1) o
o

4.5 Character tables

-1 0
0 1

4.5.1

222 | e a b c
A 1 1 1 1
B, |1 1 -1 -1
B, |1 -1 1 -1
B; |1 -1 -1 1

4.5.2 Character table of 4

-1 0

1 0
0 -1

)

Character table of 222

CHAPTER 4. APPENDIX

Matrices of the group 4mm

e (0
oo = (0
.m J— 0 _1 .m__

) 11 — 1 0 ) 11 — 1 0

Character table of 32

0 -1

2] 11) 32 203)
A 1 1 1
A, 1 1 -1
E 2 -1 0

Character table of 4/mm

4 1 2 4t 4~ 4mm 1 (1) 2 (1) 4 (2) mo1 (2) my1 (2)
A |1 1 1 1 A, 1 1 1 1 1
B |1 1 -1 -1 A, 1 1 1 ~1 ~1
'El1 -1 - B, 1 1 -1 1 -1
El1 -1 i —i B, 11 -1 ~1 1
E 2 -2 0 0 0
4.5.3 Character table of 23
emph23 | e(1) a(3) q(4) q¢°(4)
A 1 1 1 1
The value of € is 1
. E 1 1 € €*
exp 2mi /3. )
E 1 1 €* €
T 3 -1 0 0
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4.6 Space-group data

Figure 4.1: ITA space-group data for P4dmm

International Tables for Crystallography (2016). Vol. A, Space group 99, p. 417.

Tetragonal

Patterson symmetry P4/mmm

Origin on 4mm

Symmetry operations

M1
(5) m x,0,z

Generators selected

Positions

Multiplicity,
Wyckoff letter,
Site symmetry

8

FERFSERFN

g

1

m.

.m.

L.m

dmm Civ P4mm
Pdmm No. 99

+ o+ + o+
©0 ©0
+O O+ +O O+
O O+ +©® O+
[e](0) Oolo
T|¥ T|¥
+ |+ + |+
Q|0 ©|0
+O O+ +O O+
+® O+ +® O+
(0O [0JO]
v 7 ¥ ¥
Asymmetric unit 0<x<} 0<y<i; 0<z<1l; x<y
(2)2 0,0,z (3) 4" 0,0,z 4) 40,0,z
©) m 0,y,z (7) m x,%z (8) m x,x,z
(1); £(1,0,0); £(0,1,0); £(0,0,1); (2); (3); (5)
Coordinates Reflection conditions
General:
M) x,y,z 3) ) y,%,z no conditions
5) x,5,2 (@) 8) y,x,z
Special:
x4,z %5,2 3. X,2 5%z no extra conditions
x,0,z %0,z 0,x,2 0,%z no extra conditions
X,X,7 X5,z X,X,7 X,%,2 no extra conditions
5,0,z 0,1,z hkl: h+k=2n

1

a

2mm.

4dmm

4dmm

0,0,z

Symmetry of special projections

Along [001]

a=a
Origin at 0,0,z

p4dmm
' =b

no extra conditions

no extra conditions

Along [100] p1m1 Along [110] p1m1
a=b b=c¢ a'=j(—a+b) b=c
Origin at x,0,0 Origin at x,x,0

Copyright © 2016 International Union of Crystallography 417
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Figure 4.2: ITA space-group data for P4bm (selection)

P4dbm C.

No. 100 P4bm

Originondlg

Asymmetric unit 0<x<i; 0<y<i 0<z<l;

Symmetry operations

m1 )2 0,0,z (3) 4 0,0,z
) a xiz (6) b iy.z @ m x+5,52

General position

(Y2 (@) x,5,z
(5) x+3,7+ 1.2 Bzt LyFiz

dmm

Patterson sy1

() 7x.2 @) y,x,z
(M ¥+ 3,5+ 3,2 ®) y+i,x+3,2
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Figure 4.3: ITA space-group data for P2;3 (selection)

P23 ;i 23 Cubic
No. 198 P213 Patterson symmetry Pm3
| I
frm—s N
iR | 24
|k
' IR
A
x|
K
= ‘ !
A
XF( |
' . J X
) |
A
i -\E | — > | _.E_.i
Symmetry operations
11 (2) 2(0,0,3) 0,2 (3) 2(0,5,0) 0y,: @ 2(;,0,0) xi,0
(5). 3 x0% 6) 3" X+ix% (7 3% x+i,57-1,% (8) 3* %x+ix

(9) 3 X, XX (10) 3 (_:%!Ih%) x+alsf+£sf (11) 3 (I'ﬁ‘_?) J_H-I;,f-i-.ﬁ,x (12) 3 {'.s_h'\) f_§!x+%ax_

General position

(1) x,y,z ) £+ 1,5,2+1 B) xy+3:,z+3 @) x+3,+5,2
(5) z,x,y (6) z+4 3,5+ 3,7 (7) 2+ 4,%,y+13 ()T AR, !
) y,z,x (10) $,z+ 3,5+ (1) y+3,2+3,% (12) y+3,Z,x+ 5



International Tables for Crystallography (2016). Vol. A, Space group 35, pp- 294-295.

Cmm?2 C,,

No. 35 Cmm?2
Cmm?2
‘l‘
0 b I
) T ' T ' -
1 |
——4——|-—4— -
<§ | | g 4
s 0—F—0—— S -
O | | <
- —4— |- -+
4 | | i
——— -—
A2mm
T
c +O
+©
£
(o]
£
Q
+O
0 'O
b
T T
Origin on mm?2
Asymmetric unit 0<x<i; 0<y<i 0<z<l1
Symmetry operations
For (0,0,0)+ set
(H 1 22 0,0,z (3) m x,0,z @) m 0,y,z
For (4,4,0)+ set
(D) #(3,3,0) 2) 2 452 () a x5,z @ b iyz

Copyright © 2016 International Union of Crystallography 294

mm?2 Orthorhombic
Patterson symmetry Cmmm
Bm2lm
c 0
...................................... T
...................................... —
a 4
O+ +O O+
O @] O
+O ®+
+O | O+
GO+ +O | O+
O © O


http://it.iucr.org/Ac/ch2o3v0001/sgtable2o3o035/

CONTINUED

Generators selected

Positions

Multiplicity,
Wyckoff letter,
Site symmetry

8 f 1

4 e m

4 d m
4 c ..2
2 b mm2

2 a mm?2

M x,y,z

0,0,z

No.

(1); #(1,0,0); £(0,1,0); #(0,0,1); #(3,3,0); (2); (3)

Coordinates

(0,0,0)+  (5,3,0)+

(2) x5,z (3 x. 3,2 ) %, y.z

Ral =
= <
2~

N
R )
A\l

Symmetry of special projections
Along [001] c2mm

a=a b'=b
Origin at 0,0,z

Along [100] p1m1
a=3b b =c
Origin at x,0,0

295

35 Cmm?2

Reflection conditions

General:

hkl: h+k=2n
Okl: k=2n
hol: h=2n
hkO: h+k=2n
h00: h=2n
0kO: k=2n

Special: as above, plus

no extra conditions
no extra conditions
hkl: h=2n

no extra conditions

no extra conditions

Along [010] p11m
a=c b =ia
Origin at 0,y,0



International Tables for Crystallography (2016). Vol. A, Space group 14, pp. 252-259.

5
P 21 / C Czh 2/m Monoclinic

No. 14 Pl 21/6' 1 Patterson symmetry P12/m1
UNIQUE AXIS b, CELL CHOICE 1

a = ]
/° BN
Py b T 1
/ ° l B :
[ / I '
S A = =
I Lr 0
; i |
| /
b\o /

\O —® —G
--------------------------------- O+ O+
o e =
................... %—

0P, i —®
/ o ) O+

Origin at 1
Asymmetric unit 0<x<1; 0<y<i 0<z<lI
Symmetry operations

H 1 (2) 2(0,5,0) 0,y,3 3) 1 0,0,0 (4) ¢ xi.2

Copyright © 2016 International Union of Crystallography 252
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CONTINUED No. 14 P2,/c

Generators selected (1); 7(1,0,0); ¢(0,1,0); #(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
4 e 1 1) x,y,z Q) x,y+35,7+3 3) %,y,2 @ x,y+151,z+1 hol: 1=2n
0k0: k=2n
00l: 1=2n
Special: as above, plus
2 d 1 3,03 33,0 hkl: k+1="2n
2 ¢ 1 0,0,3 0,3,0 hkl: k+1="2n
2 b 1 3,0,0 3v3,3 hkl: k+1="2n
2 a 1 0,0,0 0,3,3 hkl: k+1="2n
Symmetry of special projections
Along [001] p2gm Along [100] p2gg Along [010] p2
a=a b =b a=>b b =c¢, a=;c b'=a
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
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P 21/ C Czh 2/m Monoclinic
No. 14

UNIQUE AXIS b, DIFFERENT CELL CHOICES

[e}

(o)
o)
o
Omm

P12,/cl

UNIQUE AXIS b, CELL CHOICE 1

Origin at 1
Asymmetric unit 0<x<1; 0<y<i; 0<z<l1
Generators selected (1); #(1,0,0); 7(0,1,0); #(0,0,1); (2); (3)

Positions

Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry

General:
4 e 1 (1) x,y,z Q) X,y+3,2+3 (3) x,3,Z 4) x,y+3,2+3 hol: [ =2n
0k0: k=2n
00l: I=2n
Special: as above, plus
2 d 1 5,0, 3 5,3,0 hkl: k+1=2n
2 ¢ 1 0,0, 3 0,3,0 hkl: k+1="2n
2 b 1 5,0,0 3,353 hkl: k+1=12n
2 a 1 0,0,0 0,33 hkl: k+1=2n
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CONTINUED No.

P12,/nl

UNIQUE AXIS b, CELL CHOICE 2

Origin at 1
Asymmetric unit

Generators selected (1); #(1,0,0); #(0,1,0); #(0,0,1); (2); (3)

Positions

Multiplicity, Coordinates

Wyckoff letter,

Site symmetry

4 e 1 (1) x,y,z Q) x+3,y+15,2+3 (3) x5,z @) x+35,7+35,2+;:
2 d 1 $,0,0 0,35

2 ¢ 1 3,0, 3 0,5,0

2 b T 0705% %7%70

2 a 1 0,0,0 e

P12,/al

UNIQUE AXIS b, CELL CHOICE 3

Origin at 1
Asymmetric unit
Generators selected (1); 7(1,0,0); ¢(0,1,0); #(0,0,1); (2); (3)

Positions

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

4 e 1 M x,y,z (@) x+35,y+3,2 (3 x,y,Z 4) x+3,5+5,2
2 d 1 0,0,3 )33
2 ¢ 1 10,0 0,1,0
2 b 1 3,0, 3 0,3,3
2 a1 0,0,0 110

255

14

P2,/c

Reflection conditions

General:

hOl: h+1=2n

0k0: k=2n

h00: h=2n

00/: 1=2n

Special: as above, plus
hkl: h+k+1=2n
hkl: h+k+1=2n
hkl: h+k+1=2n

hkl: h+k+1=2n

Reflection conditions

General:

hol: h=2n

0k0: k=2n

h00: h=2n

Special: as above, plus
hkl: h+k=12n

hkl: h+k=12n

hkl: h+k=2n

hkl: h+k=2n



5
P 21 / C Czh 2/m Monoclinic
No. 14 Pll1 21 /Cl Patterson symmetry P112/m
UNIQUE AXIS ¢, CELL CHOICE 1
: 0o b Q =)
© P it I I
/ / . | |
' ' ' | ! —
| [ | : : |
/ | | |
/ J / — b
a(! o] (! (o] l 1 Oe
P
/ f i
co\o /
I -Q -®
.................................. O+ O+
i o 10 1O
................. Q%_ %—
[ T— o o
0 \o
/ T3 O+ O+
! / »
!

Origin at 1
Asymmetric unit 0<x<1; 0<y<l; 0<z<
Symmetry operations

1 (2) 2(0,0,5) 3,0,z 3) 1 0,0,0 “4) a xy;
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CONTINUED

Generators selected (1); 7(1,0,0); ¢(0,1,0); #(0,0,1); (2); (3)

Positions

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

4 e 1 (1 x,y,z (2) X+3.5,2+3 (3) x5,z
2 d 1 3,1,0 0,3,3
2 ¢ 1 1,0,0 0,0, 3
2 b 1 0,3,0 LTI
2 a i 070,0 %707%

Symmetry of special projections
Along [001] p2

a=3ia b'=b

Origin at 0,0,z

Along [100] p2gm
a=hb, b'=c
Origin at x,0,0

257

No. 14

B x+3,5,2+3

P2,/c

Reflection conditions

General:

hkO: h=2n

00l: 1=2n

h00: h=2n

Special: as above, plus
hkl: h+1=2n

hkl: h+1=2n

hkl: h+1=2n

hkl: h+1=2n

Along [010] p2gg

a=c

b=a
»

Origin at 0,y,0



5
P 21/ C Czh 2/m Monoclinic
No. 14

UNIQUE AXIS ¢, DIFFERENT CELL CHOICES

P112,/a o/,

UNIQUE AXIS ¢, CELL CHOICE 1 A.

Origin at 1

Asymmetric unit 0<x<1; 0<y<I; O

IN
IN

N

<
Generators selected (1); 7(1,0,0); ¢(0,1,0); #(0,0,1); (2); (3)

Positions

Multiplicity, Coordinates Reflection conditions
Wyckoff letter,

Site symmetry General:

4 e 1 D) x,y,z (2) X+3,5,245 (3) x%,5,2 ) x4 35,02+ hkO: h=2n
00l: [=2n
h00: h=2n

Special: as above, plus

2 d 1 110 0,41 hkl: h+1=2n
2 ¢ 1 10,0 0,0,! hkl: h+41=2n
2 b 1 0,1,0 52353 hkl: h+1=2n
2 a 1 0,0,0 10,1 hkl: h+1=2n
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CONTINUED

P112,/n

UNIQUE AXIS ¢, CELL CHOICE 2

Origin at 1

Asymmetric unit 0<x<1; 0<y<I; O

IN
IN

ISE

Z

Generators selected (1); ¢(1,0,0); #(0,1,0); #(0,0,1); (2); (3)

Positions

Multiplicity, Coordinates
Wyckoff letter,

Site symmetry

4 e 1 D x,y.z (2) ¥+3.5+3,2+3 (3) %5,z ) x+s5y+

<

o o o
S o QU
—i —i —
[STE [STE ()
o PI— =
o o o
= =] I
= () ()
1— o1— o1—

[\
Q

et |
=
=
(e)
ol—
oI—
1=

P112,/b

UNIQUE AXIS ¢, CELL CHOICE 3

Origin at 1

0<x<1;

IN
IN

N

Asymmetric unit 0<y<l1; 0<z

Generators selected (1); 7(1,0,0); ¢(0,1,0); #(0,0,1); (2); (3)

Positions

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

No. 14

1 1
2,2+ 2

P2,/c

Reflection conditions

General:

hkO: h+k=2n

00/: 1=2n

h00: h=2n

0k0: k=2n

Special: as above, plus
hkl: h+k+1=2n
hkl: h+k+1=2n
hkl: h+k+1=2n

hkl: h+k+1=2n

Reflection conditions

General:

hkQO: k=2n
00l: [=2n
0k0: k=2n

Special: as above, plus

4 e 1 Mxyz  @FF+iztt  AEFI @ xy+hit)
2 d 1 3,0,0 31103
2 ¢ 1 0,40 0,0,
2 b 1 33,0 3,03
2 a1 0,00 0,4}
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hkl:
hkl:
hkl:

hkl:

k+1=2n
k+1=2n
k+1=2n

k+1=2n



