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Chapter 1

Symmetry data in International Tables
for Crystallography, Volume A: Basic
concepts and notation

1.1 Symmetry operations

1.1.1 Crystallographic Symmetry Operations and Their Representations by
Matrices

In order to describe the symmetry operations analytically one introduces a coordinate system {O, a, b, c},
consisting of a set of basis vectors a, b, c and an origin O. A symmetry operation can be regarded as an
instruction of how to calculate the coordinates x̃, ỹ, z̃ of the image point X̃ from the coordinates x, y, z
of the original point X.
The equations are

x̃ = W11 x+W12 y +W13 z + w1

ỹ = W21 x+W22 y +W23 z + w2

z̃ = W31 x+W32 y +W33 z + w3,

(1.1.1)

These equations can be written using the matrix formalism:

x̃ = W x + w = (W ,w)x where

the symmetry operations (W ,w) are given in a matrix-column form consisting of a (3×3) matrix (linear)
part W and a (3× 1)-column(translation) part w :

(W , w) =


W11 W12 W13 w1

W21 W22 W23 w2

W31 W32 W33 w3

 (1.1.2)

Apart from the matrix-column pair presentation of (W ,w) often the so-called short-hand notation for
the symmetry operations is used. It is obtained from the left-hand side of equ. (1.1.1) by omitting the
terms with coefficients 0 and writing in one line the three different rows of equ.(1.1.1), separated by
commas.

7



8 CHAPTER 1. SYMMETRY DATA IN ITA

For example, consider the symmetry operation under No. 30 in the list of general positions obtained by
the program GENPOS of the Bilbao Crystallographic Server (often referred to as BCS) for the space group
Pn3̄n, No. 222 (origin choice 2):

x̃ = (W , w)x =


0 0 −1

1 0 0

0 1 0




x

y

z

+


0

1/2

1/2

 would be

x̃ = 0x+ 0 y − 1 z, ỹ = 1x+ 0 y + 0 z + 1/2, z̃ = 0x+ 1 y + 0 z + 1/2.
The shorthand notation of (W ,w) reads: z, x+ 1/2, y + 1/2.

1.1.2 Geometric Interpretation of the Matrix-column Pairs of Symmetry Op-
erations

Geometric meaning of matrix-column pairs (W ,w)

The geometric meaning of a matrix-column pair (W ,w) can be determined only if the reference coordi-
nate system is known. The following procedure indicates the necessary steps for the complete geometric
characterization of (W ,w).

Procedure for the geometric interpretation of (W ,w)

1. W -information

(a) Type of isometry: the types 1,2,3,4,6 or 1̄,2̄,3̄,4̄,6̄ can be determined by the matrix invariants:
det(W ) and tr(W )

det(W ) = +1 det(W ) = −1

tr(W ) 3 2 1 0 −1 −3 −2 −1 0 1

type 1 6 4 3 2 1̄ 6̄ 4̄ 3̄ 2̄ = m

order 1 6 4 3 2 2 6 4 6 2

.

(b) Direction of u the rotation or rotoinversion axis or the normal of the reflection plane

i. Rotations: Calculate the matrix Y (W ) = W k−1 + W k−2 + . . .+ W + I . The elements
of any non-zero column of Y give the components of the vector u with respect to the
reference co-ordinate system.

ii. Rotoinversions: Calculate the matrix Y (−W ). The elements of any non-zero column of
Y give the components of the vector u with respect to the reference co-ordinate system.
For 2̄ = m, Y (−W ) = −W + I .

(c) Sense of rotation (for rotations or rotoinversions with k > 2): The sense of rotation is de-
termined by the sign of the determinant of the matrix Z , given by Z = [u |x |(detW )Wx ],
where u is the vector of 1b and x is a non-parallel vector of u , e.g. one of the basis vectors.

2. w -information

(a) Intrinsic translation part (screw or glide component) t/k

i. Screw rotations
t/k =

1

k
Yw ,whereW k = I (1.1.3)
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ii. Glide reflections
t/k =

1

2
(W + I )w (1.1.4)

(b) Location of the symmetry elements (fixed points xF )
i. t/k = 0

(W ,w)xF = xF . (1.1.5)

ii. t/k 6= 0
(W ,w lp)xF = xF . (1.1.6)

The column w lp = w − t/k is the so-called location part as it determines the position of the rotation or
screw-rotation axis or of the reflection or glide-reflection plane in space.

The formulæ of this section enable the user to find the geometric contents of any symmetry operation.
In reality, International Tables for Crystallography, Vol. A (referred to as ITA in the following) provides
the necessary information for all symmetry operations which are listed in the plane–group or space–group
tables. The entries of the General position are numbered. The geometric meaning of these entries is listed
under the same number in the block Symmetry operations in the tables of ITA. The explanation of
the symbols for the symmetry operations is found in Sections 2.9 and 11.2 of ITA.

1.1.3 Symmetry Operations and Symmetry Elements
The definitions of symmetry elements, geometric elements and the related element sets of symmetry
operations for crystallographic space groups and point groups are summarised in the following table.

Table 1.1.1 Symmetry elements in point and space groups

Name of Geometric Defining Operations
symmetry element element operation (d.o) in element set

Mirror plane Plane A Reflection in A D.o. and its coplanar
equivalents∗

Glide plane Plane A Glide reflection in A; 2ν (not ν) D.o. and its coplanar
a lattice translation equivalents∗

Rotation axis Line b Rotation around b, angle 2π/n 1st, . . . , (n− 1)th powers of d.o.
n = 2, 3 , 4 or 6 and their coaxial equivalents†

Screw axis Line b Screw rotation around b, angle 2π/n, 1st, . . . , (n− 1)th powers of d.o.
u = j/n times shortest lattice and their coaxial equivalents†

translation along b, right-hand screw,
n = 2, 3 , 4 or 6, j = 1, . . . , (n− 1)

Rotoinversion Line b Rotoinversion: rotation around b, D.o. and its inverse
axis and point angle 2π/n, and inversion

P on b through P , n = 3 , 4 or 6

Center Point P Inversion through P D.o. only

∗ That is, all glide reflections with the same reflection plane, with glide vectors v differing from that of
d.o. (taken to be zero for reflections) by a lattice translation vector. The glide planes a, b, c, d and e are
distinguished.
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† That is, all rotations and screw rotations with the same axis b, the same angle and sense of rotation
and the same screw vector u (zero for rotation) up to a lattice translation vector.

1.2 Site symmetry: General and Special positions

The concept of Site symmetry, ı.e. the set of symmetry operations that leave a given point fixed, allows
to define General and Special positions for space groups.

Let G be a space group and X a point. The subgroup SX = {(W , w)} of all (W , w) ∈ G that leave X
fixed, i.e. for which (W , w)X = X holds, is called the site symmetry group SX of G for the point X.
The group SX < G is of finite order. If SX = {I}, i.e. only the identity operation maps X onto itself, X
is called a point of General position. Otherwise, if SX > {I}, X is called a point of Special position.
Each point Xi of a G-orbit has its site symmetry group Si < G. The site symmetry groups Si and Sj of
two points Xi and Xj of the same G-orbit are conjugate subgroups of G: if Xj = (W , w)Xi, (W , w) ∈ G,
then Sj = (W , w)Si(W , w)−1. For this reason, all points of one special position in ITA are described
by the same site-symmetry symbol.
In ITA the so-called oriented site-symmetry symbols are used to show how the symmetry elements at a
site are related to the symmetry elements of the crystal lattice. The oriented site-symmetry symbols of
the site-symmetry groups display the same sequence of symmetry directions as the space-group symbol.
Sets of equivalent symmetry directions that do not contribute any element to the site-symmetry group
are represented by a dot.

1.3 Coordinate Transformations: basic results

Let a coordinate system be given with a basis (a1, a2, a3) and an origin O. The general transformation
(affine transformation) of the coordinate system consists of two parts, a linear part and a shift of the
origin. The transformation is uniquely defined by the (3× 3) matrix P of the linear part and the (3× 1)
column matrix p containing the components of the shift vector p.

1. The linear part is described by a (3× 3) matrix

P =


P11 P12 P13

P21 P22 P23

P31 P32 P33


i.e. the matrix which relates the new basis (a′1, a′2, a′3) to the old basis (a1, a2, a3) according to

(a′1, a′2, a′3) = (a1, a2, a3) P = (a1, a2, a3)


P11 P12 P13

P21 P22 P23

P31 P32 P33

 . (1.3.7)

2. A shift of the origin is defined by the shift vector

p = (p1a1, p2a2, p3a3)

The basis vectors a1, a2, a3 are fixed at the origin O; the new basis vectors (a′1, a′2, a′3) are fixed
at the new origin O′ that has the coordinates (p1, p2, p3) in the old coordinate system.
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The general affine transformation of the coordinates of a point X in direct space (given by the column
x = (x1, x2, x3)) is given by the following formula:

x ′ = (P ,p)−1x = P−1x −P−1p = P−1(x − p). (1.3.8)

The metric tensor G of the unit cell in direct lattice is transformed by the matrix P as follows:

G ′ = P tGP (1.3.9)

where P t is the transposed matrix of P .
The volume of the unit cell V changes with the transformation. The volume of the new unit cell V ′ is
obtained by

V ′ = det(P)V (1.3.10)

with det(P) being the determinant of the matrix P .
Also, the matrix-column pairs of the symmetry operations are changed by a change of the coordinate
system. If a symmetry operation is described in the “old”(unprimed) coordinate system by the matrix-
column pair (W , w) and in the “new”(primed) coordinate system by the pair (W ′, w ′), then the relation
between the pairs (W , w) and (W ′, w ′) is given by:

(W ′, w ′) = (P ,p)−1(W ,w)(P ,p) (1.3.11)

The coordinate systems of the space groups used by the programs and database on the Bilbao Crystallo-
graphic Server (referred to as standard or default settings) for the presentation of the space-group data
coincide with the conventional space-group descriptions found in ITA. For space groups with more than
one description in ITA, the following settings are chosen as standard: unique axis b setting, cell choice 1
for monoclinic groups, hexagonal axes setting for rhombohedral groups, and origin choice 2 (origin in 1)
for the centrosymmetric groups listed with respect to two origins in ITA. Optionally certain applications
allow the usage of the so-called ITA settings which include all conventional settings applied in ITA
(e.g. rhombohedral axes setting for rhombohedral groups, and origin choice 1 for the centrosymmetric
groups) and the great variety of about 530 settings of monoclinic and orthorhombic groups listed in
Table 4.3.2.1 of ITA. Settings different from the standard ones and the ITA settings are designated as
non-conventional.

1.4 Group-subgroup relations of space groups

1.4.1 Basic definitions

A subset H of elements of a group G is called a subgroup of G, G > H if it fulfills the group postulates
with respect to the law of composition of G. In general, the group G itself is included among the set of
subgroups of G, i.e. G ≥ H. If G > H is fulfilled, then the subgroup H is called a proper subgroup of G.
A subgroup H < G is a maximal subgroup if no group Z exists for which H < Z < G holds.

Let H < G be a subgroup of G of order |H|. Because H is a proper subgroup of G there must
be elements gq ∈ G which are not elements of H. Let g2 ∈ G be one of them. Then the set of elements
g2H = {g2 hj | hj ∈ H}1 is a subset of elements of G with the property that all its elements are different
and that the sets H and g2H have no element in common. Thus, also the set g2H contains |H| elements
of G. If there is another element g3 ∈ G which does belong neither to H nor to g2H, one can form another
set g3H = {g3 hj | hj ∈ H}. All elements of g3H are different and no one occurs already in H or in g2H.

1The formulation g2 H = {g2 hj | hj ∈ H} means: ‘g2 H is the set of the products g2 hj of g2 with all elements hj ∈ H.’



12 CHAPTER 1. SYMMETRY DATA IN ITA

This procedure can be continued until each element gr ∈ G belongs to one of these sets. In this way the
group G can be partitioned, such that each element g ∈ G belongs to exactly one of these sets.
The partition just described is called a decomposition (G : H) into left cosets of the group G relative to
the group H.

G = H ∪ g2H ∪ · · · ∪ giH (1.4.12)

The sets gpH, p = 1, . . . , i are called left cosets, because the elements hj ∈ H are multiplied with the
new elements from the left-hand side. The procedure is called a decomposition into right cosets H gs if
the elements hj ∈ H are multiplied with the new elements gs from the right-hand side.

G = H ∪Hg2 ∪ · · · ∪ Hgi (1.4.13)

The elements gp or gs are called the coset representatives. The number of cosets is called the index
[i] = |G : H| of H in G.

Two subgroups Hj ,Hk < G are called conjugate if there is an element gq ∈ G such that g−1
q Hj gq =

Hk holds. In this way, the subgroups of G are distributed into classes of conjugate subgroups that are
also called conjugacy classes of subgroups. Subgroups in the same conjugacy class are isomorphic and
thus have the same order. Different conjugacy classes of subgroups may contain different numbers of
subgroups, i.e. have different lengths.

A subgroup H of a group G is a normal subgroup HC G if it is identical with all of its conjugates,
g−1
q H gq = H, for all gq ∈ G, i.e. if its conjugacy class consists of the one subgroup H only.

1.4.2 Subgroups of space groups

The set of all symmetry operations of a three-dimensional crystal pattern forms its symmetry group, which
is the space group of this crystal pattern. An essential feature of a crystal pattern is its periodicity which
indicates that there are translations among its symmetry operations. The infinite number of translations
determines the infinite order of any space group. The set of all translations of a space group G forms the
infinite translation subgroup T (G)CG which is a normal subgroup of G of finite index. Consider the right
coset decomposition of G relative to T (G).

(I ,o) (W 2, w2) ... (Wm, wm) ... (W i, w i)

(I , t1) (W 2, w2 + t1) ... (Wm, wm + t1) ... (W i, w i + t1)

(I , t2) (W 2, w2 + t2) ... (Wm, wm + t2) ... (W i, w i + t2)

... ... ... ... ... ...
(I , tj) (W 2, w2 + tj) ... (Wm, wm + tj) ... (W i, w i + tj)
... ... ... ... ... ...

.

Obviously, the coset representatives of the decomposition (G : T (G)) represent in a clear and compact
way the infinite number of elements of the space group G. And this is one of the ways of presenting the
space groups in ITA and also in the Bilbao Crystallographic Server, i.e. by the matrices of the coset
representatives of (G : T (G)) listed in the General position.

Each coset in the decomposition (G : T (G)) is characterized by its linear part. One can show
that the set of linear parts, represented by the set of matrices W j , forms a group which is called the
point group PG of the space group G. The point groups which can belong to space groups are called
crystallographic point groups.
The following types of subgroups of space groups are to be distinguished:
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A subgroup H of a space group G is called a translationengleiche subgroup or a t-subgroup of G if the set
T (G) of translations is retained, i.e. T (H) = T (G), but the number of cosets of the decomposition
(G : T (G)), i.e. the order of the point group PG is reduced.

A subgroup H < G of a space group G is called a klassengleiche subgroup or a k-subgroup if the set T (G)
of all translations of G is reduced to T (H) < T (G) but all linear parts of G are retained. Then the
number of cosets of the decompositions (H : T (H)) and (G : T (G)) is the same, i.e. the order of the
point group PH is the same as that of PG .

A klassengleiche or k-subgroup H < G is called isomorphic or an isomorphic subgroup if it belongs to
the same affine space-group type (isomorphism type) as G does.

A subgroup of a space group is called general or a general subgroup if it is neither a translationengleiche
nor a klassengleiche subgroup. It has lost translations as well as linear parts, i.e. point-group
symmetry.

Subgroup specification Any subgroup H of a group G is related to a specific subset of elements of
G and this subset defines the subgroup uniquely: different subgroups of G, even those isomorphic to H,
correspond to different subsets of the elements of G. For example, the listing of the maximal t-subgroups
of the space groups in ITA is based on this fact: apart from the space-group type and index, each t-
subgroup H is specified by the set of coordinate triplets of the general position of G which are retained
in H.

Any subgroup H of a space group G can be specified by its ITA-number, the index in the group G
and the transformation matrix-column pair (P , p) that relates the standard bases (a,b, c)H of H and
(a,b, c)G of G:

(a,b, c)H = (a,b, c)GP (1.4.14)

The column p = (p1, p2, p3) of coordinates of the origin OH of H is referred to the coordinate system of
G.
The subgroup data listed in the Bilbao Crystallographic Server, i.e. the space-group type of H and the
transformation matrix (P , p), are completely sufficient to define the subgroup uniquely: the transforma-
tion of the coordinate triplets of general-position of H (in standard setting) to the coordinate system of
G by (P , p)−1 yields exactly the subset of elements of G corresponding to H.

Hermann theorem A very important result on group-subgroup relations between space groups is
given by Hermann’s theorem: For any group–subgroup chain G > H between space groups there exists
a uniquely defined space groupM with G ≥ M ≥ H, whereM is a translationengleiche subgroup of G
and H is a klassengleiche subgroup ofM. The decisive point is that any group-subgroup chain between
space groups G > H of index [i] can be split into a translationengleiche subgroup chain between the space
groups G andM of index [iP ] and a klassengleiche subgroup chain between the space groupsM and H
of index [iL] where [i] = [iP ] · [iL]. The first one, also called t-chain G iP

>M, is related to the reduction

of the point-group symmetry in the subgroup. The second oneM iL
> Hj is known also as k -chain and it

takes account of the loss of translations.
It may happen, that either G = M or H = M holds. In particular, one of these equations must

hold if H < G is a maximal subgroup of G. In other words, a maximal subgroup of a space group is either
a translationengleiche subgroup or a klassengleiche subgroup, never a general subgroup.

Maximal-subgroup chains If the maximal subgroups are known for each space group, then in prin-
ciple each non-maximal subgroup of a space group G with finite index can be obtained from the data on
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maximal subgroups. A non-maximal subgroup H < G of finite index [i] is connected with the original
group G through a chain H = Zk < Zk−1 < · · · < Z1 < Z0 = G, where each group Zj < Zj−1 is a
maximal subgroup of Zj−1, with the index [ij ] = |Zj−1 : Zj |, j = 1, . . . , k. The number k is finite and
the relation i =

∏k
j=1 ij holds, i.e. the total index [i ] is the product of the indices ij .

In a similar way, one can express the transformation matrix (P , p) for the symmetry reduction
G −→ H as a product of the transformation matrices (P ,p)j characterizing each of the intermediate
steps Zj−1 > Zj : (P ,p) = (P ,p)1(P ,p)2 · · · (P ,p)k (here the matrices (P ,p)j relate the bases of Zj−1

and Zj , i.e. (a,b, c)j = (a,b, c)j−1Pj).

1.4.3 Minimal supergroups
In the previous sections the relation H < G has been seen from the viewpoint of the group G. In this case
H was a subgroup of G. However, the same relation may be viewed from the group H. In that case G > H
is a supergroup of H. As for the subgroups of G, different kinds of supergroups of H may be distinguished.
The following definitions are obvious:

Let H < G be a maximal subgroup of G. Then G > H is called a minimal supergroup of H.

If H is a translationengleiche subgroup of G then G is a translationengleiche supergroup (t-supergroup)
of H.

If H is a klassengleiche subgroup of G, then G is a klassengleiche supergroup (k-supergroup) of H.

If H is an isomorphic subgroup of G, then G is an isomorphic supergroup of H.

If H is a general subgroup of G, then G is a general supergroup of H.

Following from Hermann’s Theorem, a minimal supergroup of a space group is either a translationengleiche
supergroup (t-supergroup) or a klassengleiche supergroup (k-supergroup). A proper minimal t-supergroup
has always an index i, 1 < i < 5, and is never isomorphic. A minimal k-supergroup with index i, 1 <
i < 5, may be isomorphic or non-isomorphic; for indices i > 4 a minimal k-supergroup can only be an
isomorphic k-supergroup. The propositions, theorems and their corollaries of for maximal subgroups are
valid correspondingly for minimal supergroups.

Subgroups of space groups of finite index are always space groups again. This does not hold for
supergroups. For example, the direct product G of a space group H with a group of order 2 is not a space
group although H < G is a subgroup of index 2 of G. Moreover, supergroups of space groups may be
affine groups which are only isomorphic to space groups but not space groups themselves.

In the following we restrict the considerations to supergroups G of a space group H which are
themselves space groups. This holds, for example, for the symmetry relations between crystal structures
when the symmetries of both structures can be described by space groups. Quasicrystals, incommensurate
phases etc. are thus excluded. Even under this restriction, supergroups show a much more variable
behaviour than subgroups do.

In general, the search for supergroups of space groups is much more difficult than the search for subgroups.
One of the reasons for this difficulty is that the search for subgroups H < G is restricted to the elements
of the space group G itself, whereas the search for supergroups G > H has to take into account the
whole (continuous) group E of all isometries. For example, there is only a finite number of subgroups
H of any space group G for any given index i. On the other hand, there may be not only an infinite
number of supergroups G of a space group H for a finite index i but even an uncountably infinite number
of supergroups of H. As an example, consider the group H = P1. Then there is an infinite number of
t-supergroups P1 of index 2 because there is no restriction for the sites of the centres of inversion and
thus of the conventional origin of P1.
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It is important to note that the t supergroups represent space groups only if the lattice conditions of H
fulfil the lattice conditions for G. This requirement is always satisfied if the group H and the supergroup
G belong to the same crystal family. If G is a k-supergroup of H, G and H always belong to the same
crystal family, and there are no lattice restrictions on H. In that sense the lattice conditions are useful in
the search for supergroups G > H which are space groups, i. e. form the symmetry of crystal structures.
Whereas a subgroup H < G does not become noticeable in the lattice parameters of a space group
G, a space group G > H of another crystal family must be indicated by the lattice parameters of the
space group H. Thus it may be an important advantage if the conditions of temperature, pressure or
composition allow to start the search for possible phase transitions at the low-symmetry phase.

1.5 Generation of Crystallographic Groups

1.5.1 Crystallographic point-groups and abstract groups
In this section we describe shortly the relation of the point groups to their abstract groups. There are
four kinds of abstract groups:

- Cyclic groups

- Abelian non-cyclic groups

- non-Abelian groups

- direct products of non-Abelian groups with the cyclic group of order 2.

The types of crystallographic point groups, i. e. the crystal classes, are distinguished by the geometric
meaning of their groups of symmetry operations of the macroscopic crystals. In algebraic terms, the
classification principle is the affine equivalence of matrix groups, cf. IT A, Section 8.2.3. In this respect,
an inversion, a two-fold rotation, and a reflection are clearly to be distinguished. However, considered as
groups together with the identity operation, these three symmetries belong to the same type of groups,
also called the same abstract group, which is here "C2, the cyclic group of order 2". Isomorphic point
groups may belong to different crystal classes but point groups of the same crystal class belong always
to the same abstract group, i. e. are isomorphic.

The representations of the groups are properties of the abstract groups. Therefore, isomorphic point
groups, i. e. point groups belonging to the same abstract group, have the same irreps. Instead of the 32
types of point groups or crystal classes, only 18 different abstract groups have to be distinguished. In
Table 1.5.1 the classification of the 32 crystal classes into 18 abstract groups is displayed. In order to be
able to distinguish the symbols for crystallographic point groups from those of the abstract groups, the
crystallographic point groups are designated by their HM symbols; the corresponding abstract groups
by Schoenflies symbols. These symbols are assumed to be known; they can be found in IT A or in any
textbook of crystallography.

The derivation of the 32 crystal classes can be found in many textbooks, either by geometric, e. g. Buerger
(1956), or by a mixture of geometric and algebraic arguments, e. g. Burckhardt (1966), Rigault (1980).
The crystal classes and their irreducible representations (irreps) can be easily determined once the 18
abstract groups and their irreps are known.
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Table 1.5.1 The crystallographic point groups as abstract groups

Symbol order HM symbols

C1 1 1
C2 2 2, m, 1

C3 3 3
C4 4 4, 4

C6 ≡ C3 × C2 6 3, 6, 6

D2 ≡ C2 × C2 4 2/m, 222, mm2

D3 6 32, 3m

D4 8 422, 4mm, 42m

D6 ≡ D3 × C2 12 3m, 622, 6mm, 62m

D2h ≡ C2 × C2 × C2 8 mmm

C4h ≡ C4 × C2 8 4/m

C6h ≡ C6 × C2 12 6/m

D4h ≡ D4 × C2 16 4/mmm

D6h ≡ D6 × C2 24 6/mmm

T 12 23
T h ≡ T × C2 24 m3

O 24 432, 43m

Oh ≡ O × C2 48 m3m

First column: Schoenflies symbol for the abstract group: C cyclic group; D dihedral group;
T tetrahedral group; O octahedral group. ‘×’ means ‘direct product’

Second column: group order
Third column: short Hermann-Mauguin symbols of the crystallographic point groups

1.5.2 Solvable Groups

Abelian groups and the remaining groups D3, D4, T , and O, i. e. all abstract groups of crystallographic
point groups are solvable groups.
Definition (D 1.5.2.1) A group G is called a solvable group or a soluble group if a series of subgroups
Hi exists

G BH1 B · · ·BHn−1 BHn = I,
such that the factor groups Hi/Hi+1 of the pairs H1 CG,H2 CH1, etc. are cyclic groups of prime order.

In this series which is called a composition series each of the subgroups Hi is a normal subgroup of the
group Hi−1 but not necessarily of the groups Hk with k < i− 1. In particular, Hi, i > 1, need not be a
normal subgroup of G. The group I (identity group) is the group consisting of the unit element e only.

1.5.3 Generation of Point Groups

A set of generators of a group is a subset of the group elements which by proper combination permits the
generation of all elements of the group. Different sets of generators are possible. In ITA the generation
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of the point groups by composition series is used. It is displayed in Figs. 1.5.1 and 1.5.2. A solid line
connects a pair group – normal subgroup; a horizontal dashed arrow to the left points from the subgroup
to the direct product with 1. The symbols at the solid lines are those of the generators which generate
the group from the normal subgroup. Because of its importance for the derivation of the irreps, this kind
of generation is also described in Tables 1.5.2 and 1.5.3.

Important for the calculation of the irreps in the next chapter is the observation that all factor groups in
these series have orders 2 or 3, i. e. are cyclic groups of orders 2 and 3.
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Table 1.5.2 The generation of sub-cubic point groups

HM Symbol SchoeSy generators compos. series

1 C1 1 1
1 Ci 1, 1 1 B 1

2 C2 1, 2 2 B 1

m Cs 1, m mB 1

2/m C2h 1, 2, 1 2/mB 2 B 1

222 D2 1, 2z, 2y 222 B 2 B 1

mm2 C2v 1, 2z, my mm2 B 2 B 1

mmm D2h 1, 2z, 2y, 1 mmmB 222 B . . .

4 C4 1, 2z, 4 4 B 2 B 1

4 S4 1, 2z, 4 4 B 2 B 1

4/m C4h 1, 2z, 4, 1 4/mB 4 B . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

422 D4 1, 2z, 4, 2y 422 B 4 B . . .

4mm C4v 1, 2z, 4, my 4mmB 4 B . . .

42m D2d 1, 2z, 4, 2y 42mB 4 B . . .

4/mmm D4h 1, 2z, 4, 2y, 1 4/mmmB 422 B . . .

23 T 1, 2z, 2y, 3111 23 B 222 B . . .

m3 T h 1, 2z, 2y, 3111,1 m3 B 23 B . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

432 O 1, 2z, 2y, 3111, 2110 432 B 23 B . . .

43m T d 1, 2z, 2y, 3111, m110 43mB 23 B . . .

m3m Oh 1, 2z, 2y, 3111, 2110, 1 m3mB 432 B . . .

Composition series of point group m3m and its subgroups, see also Fig. 1.5.1. For the longer composition
series only the first members are listed.

1.5.4 Generation of Space Groups
In ITA the generators and the generating procedure of the space groups have been chosen such as to
make the entries in the blocks of General position and Symmetry operations as transparent as possible.
Given the set of h generators G1,G2, . . . ,Gp, . . .Gh, any space-group operation W is generated by the
following algorithm, starting with the identity and the translations as right-most factors:

W = Gkhh .G
kh−1

h−1 . . . . .G
kp
p . . . . .G

k3
3 .G

k2
2 .G1. (1.5.15)

Here, the exponents kp are positive or negative integers, including zero.
The space-group generator G1 is the identity (zero translation). It is chosen first and assures that the
general position of G starts with the coordinate triplet x, y, z.The following generatorsG2, G3, G4 are
the translations corresponding to the three basis vectors a, b, c and G5, G6 are the generators for the
centring translations, if present. The rest of the generators G7, G8, . . . give all those symmetry operations
of the space group G which are not pure translations. They have been chosen such that their exponents
can assume only the values 0,1 and 2. Space groups of the same crystal class are generated in the same
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Table 1.5.3 The generation of sub-hexagonal point groups

HM Symbol SchoeSy generators compos. series

1 C1 1 1

3 C3 1, 3 3 B 1

3 S6 1, 3, 1 3 B 3 B 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32 D3 1, 3, 2110 32 B 3 B 1

3m C3v 1, 3, m110 3mB 3 B 1

3m D3d 1, 3, 2110, 1 3mB 32 B . . .

6 C6 1, 3, 2z 6 B 3 B 1

6 C3h 1, 3, mz 6 B 3 B 1

6/m C6h 1, 2, 2z, 1 6/mB 6 B . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

622 D6 1, 3, 2z, 2110 622 B 6 B . . .

6mm C6v 1, 3, 2z, m110 6mmB 6 B . . .

62m D3h 1, 3, mz, 2110 62mB 6 B . . .

6/mmm D6h 1, 3, 2z, 2110, 1 6/mmmB 622 B . . .

Composition series of point group 6/mmm and its subgroups, see also Fig. 1.5.2. For the longer compo-
sition series only the first members are listed. The complete series can be composed step by step using
the previous composition series.

way. In ITA, the generators are designated by the numbers in front of the corresponding general-position
co-ordinate triplets.
The coordinate triplets of the General position are obtained by single-sided, (i.e left-sided) multiplication
of the matrices representing the generators until no new matrices are found. Resulting matrices that differ
only by a lattice translation are considered as equal, and the translations parts are chosen such so that
the symmetry operations lie within the unit cell.
The generating procedure used in ITA highlights important subgroups of space groups as much as possible.
For example, once the translation subgroup T G of a space group G is generated, the process of generation
follows step-wise procedure via a chain of normal and maximal subgroups

G B H1 B H2 B · · · B T G , (1.5.16)

with indices |Hi : Hi+1| equal to 2 or 3. In other words, each new (non-translational) generator generates
a minimal translationengleiche or t-supergroup Hi of Hi+1 of index 2 or 3.



20 CHAPTER 1. SYMMETRY DATA IN ITA

1.6 Exercises

1.6.1 Matrix calculus in crystallography (brief revision)

• Exercise 1.6.1.1. Matrix transposition

1. Construct the transposed matrix of the (3× 1) row matrix A =
(

1 3 4
)
.

2. Determine which of the following matrices are symmetric and which are skew-symmetric

A =

(
3 0

0 2

)
;B =

(
3 4

−4 1

)
;C =

(
2 −1

−1 1

)
;D =

(
0 2

−2 0

)
;E =

(
0 0

1 0

)
;

F =
(

2
)

;G =


0 1 −2

−1 0 3

2 −3 0

 ;H =


3 2

2 1

1 0

 ;J =

(
0 0

0 0

)
.

• Exercise 1.6.1.2. Matrix addition and subtraction

1. Find 3A-2B , where A =

(
1 2

3 0

)
and B =

(
1 3

0 −4

)
.

2. Show that the sum of any matrix and its transposed is a symmetric matrix, i.e. (A+AT )T =
A + AT .

3. Show that the difference of any matrix and its transposed is a skew-symmetric matrix, i.e.
(A−AT )T = −(A−AT ).

• Exercise 1.6.1.3. Matrix multiplication

1. Find the products AB and BA if they exists, where A =

(
1 2

3 −4

)
and B =

(
3 −2 2

1 0 −1

)
.

2. Find the matrix products AB and BA of the row vector A =
(

1 2 3
)
and the column vector

B =


−2

4

1

.

3. Prove that A(BC )=(AB)C where A =

(
1 2

−1 3

)
, B =

(
1 0 −1

2 1 0

)
and C =


1 −1

3 2

2 1

.

• Exercise 1.6.1.4. Trace and determinant of a matrix

1. Find the values of the traces and the determinants of A and B where

A =

(
1 2

−1 3

)
and B =


0 4 2

4 −2 −1

5 1 3

.

2. Show that det(AB) = det(A)det(B) where A =

(
3 2

5 1

)
and B =

(
1 6

2 9

)
.
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3. Show that det(A) = det(AT ) where A =


1 1 3

2 2 2

3 2 3

.

• Exercise 1.6.1.5. Inverse of a matrix

1. Show that the matrix B = 1/3


11 −9 1

−7 9 −2

2 −3 1

 is the inverse of A =


1 2 3

1 3 5

1 5 12

.

2. Determine the inverses of the matricesA =


−1 0 0

0 −1 0

0 0 1

;B =


0 −1 0

1 0 0

0 0 −1

;C =


0 0 1

1 0 0

0 1 0

;

D =


1 1 0

−1 1 0

0 0 1

; E =


−1 1 1

1 −1 1

1 1 −1

 and F =


0 1 1

1 0 1

1 1 0

.

3. Given that A =


1 2 0

−1 0 3

2 −1 0

 determine A−1.

• Exercise 1.6.1.6. Matrix-column presentation of symmetry operations

1. Referred to an ‘orthorhombic’ coordinate system (a 6= b 6= c;α = β = γ = 90) two symmetry

operations are represented by the following matrix-column pairs: (W 1,w1) =




1̄ 0 0

0 1 0

0 0 1̄

 ,


0

0

0




and (W 2,w2) =




1̄ 0 0

0 1 0

0 0 1̄

 ,


1/2

0

1/2


.

(a) Determine the images Xi of a point X =


0.7

0.31

0.95

 under the action of the symmetry

operations.
(b) Can you guess what is the ‘geometric nature’ of (W 1,w1) and (W 2,w2)?
(c) Determine the determinant and the trace of W 1.
(d) Determine the sets of fixed points of (W 1,w1) and (W 2,w2).

2. Consider the matrix-column pairs of the two symmetry operations (W 1,w1) =




0 1̄ 0

1 0 0

0 0 1̄

 ,


0

0

0




and (W 2,w2) =




1̄ 0 0

0 1 0

0 0 1̄

 ,


1/2

0

1/2


.
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(a) Determine and compare the matrix-column pairs of the combined symmetry operations:
(W ,w) = (W 1,w1)(W 2,w2) and (W ,w)′ = (W 2,w2)(W 1,w1).

(b) Determine the inverse symmetry operations (W 1,w1)−1 and (W 2,w2)−1.
(c) Determine the inverse symmetry operation (W ,w)−1 if (W ,w) = (W 1,w1)(W 2,w2).

3. Consider the matrix-column pairs (A,a) =




0 1 0

1 0 0

0 0 1̄

 ,


1/2

1/2

1/2


 and (B , b) =




0 1 0

0 0 1

1 0 0

 ,


0

0

0


.

(a) What are the matrix-column pairs resulting from: (A,a)(B , b) = (C , c) and (B , b)(A,a) =
(D ,d).

(b) Determine (A,a)−1, (B , b)−1, (C , c)−1 and (D ,d)−1. What is (B , b)−1(A,a)−1?

1.6.2 Space-group symmetry data
• Exercise 1.6.2.1. Matrix-column presentation of symmetry operations

1. Referred to an ‘orthorhombic’ coordinate system (a 6= b 6= c;α = β = γ = 90) two symmetry
operations are represented by the following matrix-column pairs:

(W 1,w1) =




1̄ 0 0

0 1 0

0 0 1̄

 ,


0

0

0


 and (W 2,w2) =




1̄ 0 0

0 1 0

0 0 1̄

 ,


1/2

0

1/2


.

(a) Determine the images Xi of a point X =


0.7

0.31

0.95

 under the action of the symmetry

operations.
(b) Can you guess what is the ‘geometric nature’ of (W 1,w1) and (W 2,w2)?
(c) Determine the determinant and the trace of W 1.
(d) Determine the sets of fixed points of (W 1,w1) and (W 2,w2).

2. Consider the matrix-column pairs of the two symmetry operations

(W 1,w1) =




0 1̄ 0

1 0 0

0 0 1̄

 ,


0

0

0


 and (W 2,w2) =




1̄ 0 0

0 1 0

0 0 1̄

 ,


1/2

0

1/2


.

(a) Determine and compare the matrix-column pairs of the combined symmetry operations:
(W ,w) = (W 1,w1)(W 2,w2) and (W ,w)′ = (W 2,w2)(W 1,w1).

(b) Determine the inverse symmetry operations (W 1,w1)−1 and (W 2,w2)−1.
(c) Determine the inverse symmetry operation (W ,w)−1 if (W ,w) = (W 1,w1)(W 2,w2).

3. Consider the matrix-column pairs (A,a) =




0 1 0

1 0 0

0 0 1̄

 ,


1/2

1/2

1/2


 and (B , b) =




0 1 0

0 0 1

1 0 0

 ,


0

0

0


.

(a) What are the matrix-column pairs resulting from: (A,a)(B , b) = (C , c) and (B , b)(A,a) =
(D ,d).
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(b) Determine (A,a)−1, (B , b)−1, (C , c)−1 and (D ,d)−1. What is (B , b)−1(A,a)−1?

• Exercise 1.6.2.2. Consider the General position data given in ITA for the space group

(a) Cmm2 (No. 35):

1. Characterize geometrically the matrix-column pairs listed under General position of the
space group Cmm2. Compare the results with the data listed under Symmetry operations.

2. Consider the diagram of the symmetry elements of Cmm2. Try to determine the matrix-
column pairs of the symmetry operations whose symmetry elements are indicated on the
unit-cell diagram.

3. Compare your results with the results of the program SYMMETRY OPERATIONS for the ge-
ometric interpretation of the matrix-column pairs of the symmetry operations considered
in this exercise.

(b) P4mm (No. 99):
1. Characterize geometrically the matrix-column pairs listed under General position of the

space group P4mm. Compare the results with the data listed under Symmetry operations.
2. Consider the diagram of the symmetry elements of P4mm. Try to determine the matrix-

column pairs of the symmetry operations whose symmetry elements are indicated on the
unit-cell diagram.

3. Compare your results with the results of the program SYMMETRY OPERATIONS for the ge-
ometric interpretation of the matrix-column pairs of the symmetry operations considered
in this exercise.

Attachments: Copies of the ITA pages with the space-group data of Cmm2, No. 35.

Copies of the ITA pages with the space-group data of P4mm, No. 99.

• Exercise 1.6.2.3. The General position of a space group is listed as:

(1) x, y, z (2) x̄, y + 1
2 , z̄ + 1

2

(3) x̄, ȳ, z̄ (4) x, ȳ + 1
2 , z + 1

2 .

1. Construct the matrix-column pairs of these ‘coordinate triplets’. Write down the corresponding
(4× 4) matrix representation.

2. Characterize geometrically the matrices if they refer to a monoclinic basis with unique axis b
(type of operation, glide (screw) component, fixed points, nature and location of the symmetry
element).

3. Use the program SYMMETRY OPERATIONS of BCS for the geometric interpretation of the matrix-
column pairs of the symmetry operations.

• Exercise 1.6.2.4. Determine the orientation and location of the three mutually perpendicular 2-fold
rotation axes in the space groups P222, P2221, P21212 y P212121.

• Exercise 1.6.2.5. Consider the special Wyckoff positions of the the space group P4mm (No. 99)

1. Determine the site-symmetry groups of Wyckoff positions 1a and 1b. Compare the results with
the listed data of P4mm in ITA .

2. The coordinate triplets (x, 1/2, z) and (1/2, x, z), belong to Wyckoff position 4f . Compare
their site-symmetry groups.

3. Compare your results with the output of the BCS program WYCKPOS for the space group P4mm.
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4. Use the option Non-conventional settings of the program WYCKPOS to determine the coordinate
triplets of the Wyckoff positions of the space group P4mm referred to a non-conventional
setting with the four-fold rotation axes parallel to a axis.

Attachments: Copies of the ITA pages with the space-group data of P4mm, No. 99.

• Exercise 1.6.2.6. The following matrix-column pairs (W , w) are determined with respect to a basis
(a,b,c): (1) x, y, z (2) x̄, y + 1

2 , z̄ + 1
2 (3) x̄, ȳ, z̄ (4) x, ȳ + 1

2 , z + 1
2 .

- Determine the corresponding matrix-column pairs (W ′,w ′) with respect to the basis (a′,b′, c′) =
(a,b, c)P , with P= c,a,b.

- The coordinates of a point X =


0.70

0.31

0.95

 are determined with respect to the basis (a,b,c).

What would be the coordinates X ′ referred to the basis (a′,b′, c′)?

• Exercise 1.6.2.7. ITA -conventional settings of space groups

1. Consider the space group P21/c (No. 14). Show that the relation between the General and
Special position data of P1121/a (setting unique axis c ) can be obtained from the data P121/c1
(setting unique axis b ) applying the transformation (a,b, c)c = (a,b, c)bP , with P= c,a,b.

2. Use the BCS retrieval tools GENPOS (generators and general positions) and WYCKPOS (Wyckoff
positions for accessing ITA data. Get the data on general and special positions in different
settings either by specifying transformation matrices to new bases, or by selecting one of the
530 settings of the monoclinic and orthorhombic groups listed in ITA (cf. Table 4.3.2.1).

Attachments: Copies of the ITA pages with the space-group data of P21/c (No. 14).

• Exercise 1.6.2.8. ITA and Non-conventional settings of space groups

1. Use the BCS retrieval tools GENPOS (generators and general positions), WYCKPOS (Wyckoff
positions and HKLCOND (reflection conditions) for accessing ITA data. Get the data on general
and special positions in different settings either by specifying transformation matrices to new
bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed
in ITA (cf. Table 4.3.2.1).

2. Consider the General position data of the space group Im3̄m (No. 229). Using the option
Non− conventional setting obtain the matrix-column pairs of the symmetry operations with
respect to a primitive basis (ap,bp, cp), applying the transformation ap,bp, cp = 1

2 (−a + b +
c), 1

2 (a− b + c), 1
2 (a + b− c) (where (a,b, c) is the conventional basis).

1.6.3 Group-subgroup relations of space groups
• Exercise 1.6.3.1. Construct the diagram of the t-subgroups of P4mm using the ‘analogy’ with the

subgroup diagram of the group 4mm, cf. Exercise ??. Give the standard Hermann-Mauguin symbols
of the t -subgroups of P4mm.

• Exercise 1.6.3.2. The retrieval tool MAXSUB gives an access to the database on maximal subgroups of
space groups as listed in ITA1. Consider the maximal subgroups of the group P4mm, (No. 99) and
compare them with the maximal subgroups of P4mm derived in Problem 1.6.3.1 (ITA Exercises).
Comment on the differences, if any.
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• Exercise 1.6.3.3. Study the group–subgroup relations between the groups G = P41212, No. 92, and
H = P21, No. 4 using the program SUBGROUPGRAPH. Consider the cases with specified (e.g. [i] = 4)
and unspecified index of the group-subgroup pair.

• Exercise 1.6.3.4. Translationengleiche subgroups of P4mm

(a) Explain the difference between the contracted and complete graphs of the t-subgroups of P4mm
(No. 99) obtained by the program SUBGROUPGRAPH. Compare the complete graph with the
results of Problems ??. and 1.6.3.1 of ITA Exercises.

(b) Explain why the t-subgroup graphs of all 8 space groups from No. 99 (P4mm) to No. 106
(P42bc) have the same ‘topology’ (i. e. the same type of ‘family tree’), only the corresponding
subgroup entries differ.

• Exercise 1.6.3.5. Domain-structure analysis
Determine the type and number of domain states in structural phase transitions specified by:

1. High-symmetry phase: P2/m

Low-symmetry phase: P1 with small unit-cell deformation;
2. High-symmetry phase: P2/m

Low-symmetry phase: P1 with duplication of the unit cell;
3. High-symmetry phase: P4mm

Low-symmetry phase: P2 of index 8;
4. High-symmetry phase: P42bc

Low-symmetry phase: P21 of index 8.

• Exercise 1.6.3.6. Phase transitions in BaTiO3

The crystal structure of BaTiO3 is of perovskite type. Above 120C BaTiO3 has the ideal paraelectric
cubic structure (space group Pm3̄m ) shown in Figure 1.1. Below 120C BaTiO3 assumes three
structures with slightly deformed unit cells, all three being ferroelectric with different directions of
the axis of spontaneous polarisation (polar axis). The three ferroelectric polymorphs differ in the
direction of displacement of the Ti-atoms from the centres of the octahedra (and the accompanying
lattice distortion):

(a) No displacement: cubic structure
(b) Displacement parallel to a cube edge: < 100 >, symmetry group P4mm;
(c) Displacement parallel to face diagonal of the cube:< 110 >, symmetry group Amm2;
(d) Displacement parallel to a body diagonal of the cube: < 111 >, symmetry group R3m.

(i) Which subgroup indices do the three space groups of the ferroelectric polymorphs display with
respect to the cubic group Pm3̄m?

(ii) How many orientation states of the twin domains occur for each polymorph? Which mutual
orientation do the domains exhibit for case (b)?

• Exercise 1.6.3.7. SrTiO3 has the cubic perovskite structure, space group Pm3̄m. Upon cooling below
105K, the coordination octahedra are mutually rotated and the space group is reduced to I 4/mcm;
c is doubled and the unit cell is increased by the factor of four. Can we expect twinned crystals of
the low symmetry form? If so, how many kinds of domains?
Determine the number and type of domains of the low-symmetry form of SrTiO3 using the computer
tools of the Bilbao Crystallographic server.
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Figure 1.1: (1) Perovskite structure (undistorted); (2) Distorted perovskite structure: Ti displacements
and lattice distortion parallel to a cube edge, and the related dipole generation in BaTiO3

• Exercise 1.6.3.8. Study the splittings of the Wyckoff positions for the group-subgroup pair P4mm
(No. 99)> Cm (No. 4) of index 4 by the program WYCKSPLIT.

• Exercise 1.6.3.9. Consider the group–supergroup pair H < G with H = P222, No. 16, and the
supergroup G = P422, No. 89, of index [i] = 2. Using the program MINSUP determine all supergroups
P422 of P222 of index [i] = 2. How does the result depend on the normalizer of the supergroup
and/or that of the subgroup.

1.6.4 Crystal-structure descriptions

• Exercise 1.6.4.1. Structure descriptions for different space-group settings

Problem 1.6.4.1A Scheelite (CaWO4)
Scheelite (CaWO4) is a mineral that crystallizes in the space group I41/a (No. 88). In the
Inorganic Crystal Structure Database the following two descriptions of CaWO4 can be found:

# (a) Origin choice 1 # (b) Origin choice 2
88 88

5.243 5.243 11.376 90 90 90 5.243 5.243 11.376 90 90 90

3 3

Ca 1 4b 0.0000 0.0000 0.5000 Ca 1 4b 0.0000 0.2500 0.6250

W 1 4a 0.0000 0.0000 0.0000 W 1 4a 0.0000 0.2500 0.1250

O 1 16f 0.2413 0.1511 0.0861 O 1 16f 0.1504 0.0085 0.2111

(1) Compare the two structure descriptions using the program SETSTRU.
(2) Use the program TRANSTRU to compare these two structure descriptions. Use as trans-

formation matrix the origin shift p = 0, 1/4, 1/8 to transform the structure described in
origin choice 1 into origin choice 2.

Hint: In order to compare the different data, the parameters of Structure (a) are to be trans-
formed to ’origin at center 2/m’, i.e. ORIGIN CHOICE 2.
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Problem 1.6.4.1B Zircon ZrSiO4 (Wondratschek, 2002)

(a) In R. W. G. Wyckoff, Crystal structures, vol. II, Ch. VIII, one finds the important mineral
zircon ZrSiO4 and a description of its crystal structure. Many rare-earth phosphates,
arsenates, and vanadates belong to the same structure type.

Structural data: Space group I41/amd = D19
4h, No. 141;

lattice constants a = 6.60 Å; c = 5.88 Å.

The origin choice is not stated explicitly. However, Wyckoff’s Crystal Structures started to
appear in 1948, when there was one conventional origin only (the later ORIGIN CHOICE
1, i. e. Origin at 4̄m2).

Zr : (a) 0, 0, 0; 0, 1
2 ,

1
4 ; 1

2 , 0,
3
4 ; 1

2 ,
1
2 ,

1
2 ;

Si : (b) 0, 0, 1
2 ; 0, 1

2 ,
3
4 ; 1

2 , 0,
1
4 ; 1

2 ,
1
2 , 0;

O : (h) (0, u, v; 0, ū, v; u, 0, v̄; ū, 0, v̄; 0, 1
2 + u, 1

4 − v; 0, 1
2 − u, 1

4 − v;

ū, 1
2 , v + 1

4 ; u, 1
2 , v + 1

4 ; ) [ and the same with ( 1
2 ,

1
2 ,

1
2 )+ ].

The parameters u and v are listed with u = 0.20 and v = 0.34.

(b) In the Structure Reports, vol. 22, (1958), p. 314 one finds:

‘a = 6.6164(5) Å, c = 6.0150(5) Å’
‘Atomic parameters. Origin at center (2/m) at 0, 1̄

4 ,
1
8 from 4̄m2.’

‘Oxygen: (0, y, z) with y = 0.067, z = 0.198.’

Compare the two structure descriptions and check if they belong to the same structure type.
Which of the structure tools of the Bilbao Crystallographic Server could help you to solve the
problem?

Hint:In order to compare the different data, the parameters of Wyckoff’s book are to be
transformed to ‘origin at center 2/m’, i. e. ORIGIN CHOICE 2.

• Exercise 1.6.4.2. Equivalent structure descriptions

(a) CsCl is cubic, space group Pm3̄m, with the following co-ordinates

Atom Wyckoff Coordinate triplets

position x y z

Cl 1a 0.0 0.0 0.0

Cs 1b 0.5 0.5 0.5

How many equivalent sets of co-ordinates can be used to describe the structure? What are
their co-ordinates?

Hint : The number of different equivalent descriptions of CsCl is equal to the index of its space
group Pm3̄m(a,b, c) in the Euclidean normalizer Im3̄m(a,b, c), i.e. [i] = 2. The two different
descriptions are generated by the coset representatives of the decomposition of the normalizer
with respect to the space group.

(b) P(C6C5)4[MoNCl4] is tetragonal, space group P4/n, with the following co-ordinates:
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Atom Wyckoff Coordinate triplets

position x y z

P 2b 0.25 0.75 0

Mo 2c 0.25 0.25 0.121

N 2c 0.25 0.25 −0.093

C1 8g 0.362 0.760 0.141

C2 8g 0.437 0.836 0.117

Cl 8g 0.400 0.347 0.191

(H and C3 to C6 omitted)

How many equivalent sets of co-ordinates can be used to describe the structure? What are
their co-ordinates?

Hint : The number of different equivalent descriptions of P(C6C5)4[MoNCl4] is equal to the
index of its space group P4/n in the Euclidean normalizer. The different descriptions are
generated by the coset representatives of the decomposition of the normalizer with respect to
the space group. In the special case of P(C6C5)4[MoNCl4] such equivalent descriptions can be
generated, for example, by the translations t(0, 0, 1/2) and t(1/2, 1/2, 0), and by a reflection
through a mirror plane at (x, x, z) represented by the coordinate triplet (y, x, z).

• Exercise 1.6.4.3. Isoconfigurational structure types (Koch & , Fischer, 2002)

Do the following three structures belong to the same structure type? Try to find analogous coordi-
nate descriptions for all three crystal structures.

1. KAsF6 (ICSD: 59413)

Unit Cell 7.348(1) 7.348(1) 7.274(8) 90. 90. 120
Space group R-3h

Atom Wyckoff Coordinate triplets

position x y z

K 3b 0.33333 0.66667 0.166667

As 3a 0 0 0

F 18f 0.1292(2) 0.2165(2) 0.1381(2)

2. BaIrF6 (ICSD: 803188)

Unit Cell 7.3965(1) 7.3965(1) 7,2826(1) 90. 90. 120
Space group R-3h

Atom Wyckoff Coordinate triplets

position x y z

Ba 3b 0.33333 0.6666 0.166666

Ir 3a 0 0 0

F 18f 0.0729(2) 0.2325(2) 0.1640(2)
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3. BaSnF6 (ICSD: 33788)

Unit Cell 7.4279(2) 7.4279(2) 7.418(2) 90. 90. 120
Space group R-3h

Atom Wyckoff Coordinate triplets

position x y z

Ba 3a 0 0 0

Sn 3b 0 0 0.5

F 18f 0.2586(3) 0.8262(3) 0.0047(3)

Hint : Consider the Euclidean normalizer of symmetry group R3(hex) of KAsF6. The number of
different equivalent descriptions of KAsF6 is equal to the index of its space group in the Euclidean
normalizer. The different descriptions are generated by the coset representatives of the decomposi-
tion of the normalizer with respect to the space group. In the special case of KAsF6 such equivalent
descriptions can be generated, for example, by the translation t(0, 0, 1/2), by a reflection through
a mirror plane at (x,−x, z) represented by the coordinate triplet (−y,−x, z), etc.

• Exercise 1.6.4.4. Crystal structure descriptions

In Inorganic Crystal Structure Database can be found several structure data sets of ε-Fe2O3, all of
them of symmetry Pna21 (No.33). Compare the two structure descriptions listed in the Exercise
Data file and check if they belong to the same structure type.



Chapter 2

The irreps of the crystallographic point
groups

In this chapter the representations of the crystallographic point groups are dealt with. Basic definitions
and lemmata of the representation theory of finite groups are presented in Section 2.1. Section 2.2 contains
the derivation of the irreps of cyclic and non-cyclic Abelian groups. In Section 2.3 the direct products of
C2 with the ‘basic’ groups of Section 2.4 are dealt with. Further developments of representation theory
necessary for the development of a general procedure for the irrep derivation is found in Chapter 2.5.

2.1 Representations

Definition (D 2.1.0.1) A group H of concrete elements (mappings, permutations, matrices, etc.) is
called a representation D (sensu lato) of the (abstract) group G if H is a homomorphic image of G. A
representation is called faithful if the homomorphism is one-to-one, i. e. is an isomorphism.

Example. The 24 symmetry operations of a regular tetrahedron, the 24 permutations of its 4 ver-
tices, and the 24 matrices of the ‘general position’ of space group P43m, No. 215 of IT A are faithful
representations of the group T , the ‘tetrahedral group’.

If the elements are matrices with the combination law of matrix multiplication then the representation
is called a representation (sensu stricto) or simply ‘representation’ and is here abbreviated as rep. Only
such reps by matrices are dealt with in this manuscript.
The rank of the matrices is called the dimension of the rep.

For convenience we repeat 3 important properties of reps:

1. Let G be a group and H a rep of G. If gm → hm, gn → hn, and gm gn = gmn → hmn, then
hm hn = hmn for all gm, gn ∈ G, i. e. the product of the images is equal to the image of the product.

2. A normal subgroup of G, called the kernel K E G is mapped onto the unit element e ∈ H.

3. The group H is a faithful rep of the factor group G/K but not necessarily isomorphic to a subgroup
of G.

Lemma 2.1.1 A rep of every group G is the identity rep which assigns the (one-dimensional matrix) 1
to each element of G. It is also called the ‘trivial rep’.

30
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2.1.1 Matrices

A matrix rep forms a group. Therefore, its matrices A are regular square matrices with finite orders and

|detA| = 1. An example for a matrix of infinite order is B =

(
1 1

0 1

)
.

Definition (D 2.1.1.1) Equivalent matrices. Two matrices A and B are called equivalent if there is
a regular matrix X with X−1 AX = B .

By this definition the set of all regular matrices is distributed to equivalence classes. Equivalent matrices
have the same order and the same eigenvalues, in particular the same trace and determinant. One can
understand equivalent matrices as different descriptions of the same mapping but referred to different
bases. Therefore, they are considered not to be essentially different.

Definition (D 2.1.1.2) A matrix A is called reducible if it is equivalent to a matrix of the form(
R1 S
O R2

)
. It is called fully reducible if S = O is the matrix consisting only of zeroes.

Lemma 2.1.2 Any matrix of finite order is fully reducible to components of dimension 1.

Example.The matrix B =

(
1 1

0 1

)
is reduced but is not fully reducible.

This is no contradiction because B is of infinite order.

2.1.2 General remarks on representations

Every group G has infinitely many reps. How can one get an overview on them ?
In the same way as for matrices the concepts: equivalent, reducible, and fully reducible can be defined
also for sets of matrices, including matrix groups. Here only the definition for the equivalence of reps of
groups is formulated. The other definitions are analogous.

Definition (D 2.1.2.1) Equivalent reps. Two reps D(1) and D(2) of a group G are called equivalent
if there is a regular matrix X which transforms the matrices A1(gk) ∈ D(1) simultaneously to A2(gk) ∈
D(2): X−1 A1(gk)X = A2(gk) for all elements gk ∈ G.
One can understand equivalent reps as different descriptions of the same group of mappings but referred
to different bases. Therefore, they are considered not to be essentially different.

Lemma 2.1.3 Each rep of a finite group is equivalent to a rep by unitary matrices.

Other than a single matrix, a rep is not necessarily reducible or fully reducible to components of dimension
1.

Definition (D 2.1.2.2) A set of matrices is called irreducible if it is neither reducible or fully reducible.

Lemma 2.1.4 Each rep of a finite group is either fully reducible or irreducible. A rep D which is fully
reduced into the reps D(1) with matrices {D(1)(gk)} and D(2) with matrices {D(2)(gk)} is called the
direct sum D(1) ⊕D(2) of the reps D(1) and D(2). With D also D(1) and D(2) are reps of G.
The reduction can be continued until D is fully reduced into irreducible constituents D(i). Then the
number n of irreducible constituents in D is called the length of the reduction. The number of occurences
of an irreducible constituent D(i) in the reduction of D is called its multiplicity mi. Different reductions of
a rep have the same length, the same irreducible constituents up to the sequence and equivalence, and the
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same multiplicities. A fully reducible rep is determined by its irreducible constituents up to equivalence.

2.1.3 Irreducible representations (irreps)

The number of irreps of a finite group is relatively small; it is strongly restricted by two lemmata which
here can be only stated. They are more extensively dealt with in DP.

Lemma 2.1.5 The number of different irreps of a group G is equal to the number of conjugacy classes of
G.
The immediate consequence of this lemma is:

1. The number of irreps of an Abelian group G is equal to the order of G because each element g ∈ G
forms a conjugacy class for itself.

2. The number of irreps of a non-Abelian group G is smaller than the order of G.

Lemma 2.1.6 The sum of the squares of the dimensions of the different irreps of a group G is equal to
the order of the group: |G| = n2

1 + n2
2 + . . . n2

r.

For small group orders |G| these two lemmata determine the number and the dimensions of the irreps
uniquely. However, the 10 irreps of the group O × C2 of order 48 might be of dimensions 6 + 2 + 1 + 1 +
1 + 1 + 1 + 1 + 1 + 1 or 5 + 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 or 4 + 4 + 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 or
4 + 3 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 or 3 + 3 + 3 + 3 + 2 + 2 + 1 + 1 + 1 + 1 if the structure of the group
is not taken into consideration.

A number of crystallographic point groups are direct products of groups, see Table 1.5.1 on p. 16. For
the construction of their irreps, the following theorem is very useful.

Lemma 2.1.7 The irreps D(ij)(G) of the direct product of two groups G = H1 ×H2 can be constructed
from the irreps D(i)(H1) and D(j)(H2) in the following way: D(ij)(G) = D(i)(H1) ⊗ D(j)(H2), with
the elements D(ij)(g)pq;rs = D(i)(h1)prD

(j)(h2)qs where g = h1 h2. The indices p and r run from 1 to
dim(D(i)(H1)); the indices q and s run from 1 to dim(D(j)(H2)). Thus, the dimension of the irrep of G
is equal to the product of the dimensions of the irreps of H1 and H2. All irreps of G are obtained in this
way if D(i)(H1) and D(j)(H2) run through all irreps of H1 and H2.

Example. The direct product (orKronecker product)A⊗B of the two matricesA =

(
0 −1

1 0

)

and B =


0 0 −1

1 0 0

0 −1 0

 can be expressed by the

super matrix A⊗B =

(
0B (−1)B
1B 0B

)
=



0 0 0 0 0 1

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 −1 0 0 0 0


.
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2.2 The irreps of Abelian groups
Because finite Abelian groups are either cyclic groups or isomorphic to direct products of cyclic groups,
their irreps can be easily determined, once the irreps of the cyclic groups are known.

2.2.1 The irreps of cyclic groups
Lemma 2.2.1 The n irreps of a cyclic group Cn = 〈g〉 = {e, g, g2, . . . , gn−1} are given by the formula
D(p)(gm) = [exp(2π i (p− 1)/n)]m = exp(2π im(p− 1)/n), m, p = 1, 2, . . . , n.

Crystallographic examples are C1, C2, C3, C4, and C6.

Examples.

The group table for C1 is trivial. From it the table of irreps
C1 e

A 1
results.

The group table for C2 is
C2 e a

e e a

a a e

; the table of irreps is
C2 e a

D(1) 1 1

D(2) 1 −1

.

The irrep D(1) is called A, the irrep D(2) is B, see Altmann & Herzig (1994).

2.2.2 The irreps of direct products of cyclic groups
Each Abelian group is the direct product of cyclic groups. Because the irreps of cyclic group are one-
dimensional, the formula for the direct product of irreps in lemma 2.1.7 simplifies considerably. Consider
G = Cr ⊗ Cs, where Cr = 〈a〉 and Cs = 〈b〉 are cyclic groups of orders r and s. Then the irreps of the
generators of group G are given by

D(pq)(a, e) = [exp 2π i (p− 1)/r] and D(pq)(e, b) = [exp 2π i (q − 1)/s]

which are obtained from the general element

D(pq)(am, bn) = [exp 2π i (p− 1)/r]m [exp 2π i (q − 1)/s]n of G by n = s and m = r.

The general element D(pq)(am, bn) can be expressed by
exp 2π im (p− 1)/r exp 2π i n (q − 1)/s = exp 2π i(m (p− 1)/r + n (q − 1)/s),
where m, p = 1, . . . , r and n, q = 1, . . . , s.

As a simple illustration of this general result one can consider the irreps of the group
D2 = C2 × C2. Its irreps will be dealt with in an exercise.

2.3 The irreps of direct products with the group C2

All point groups which are direct products and play a role in 3-dimensional crystallography are direct
products with the group C2, see Table 1.5.1 on p. 16. As we have seen, the group C2 has two 1-dimensional
irreps with coefficients ±1.

Let G = H × C2 and D(j)(H) be the irreps of H. Then,
each irrep D(j) of H gives rise to two irreps of G which are
often designated by D(j)+ and D(j)− or D(j) g and D(j)u

(‘g’= gerade; ‘u’=ungerade).

H× C2 H e H a

D(j)+ D(j) D(j)

D(j)− D(j) −D(j)
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Examples: irreps of centrosymmetric groups, see Figs. 1.5.1 and 1.5.2.

2.4 The irreps of solvable non-Abelian groups

The irreps of crystallographic non-Abelian groups are well known and treated in many books on repre-
sentation theory. The general approach for their determination is based on the theory of characters.

The irreps of the non-Abelian groups can also be derived using a procedure which is based on the solvabil-
ity of the crystallographic groups (cf. Section 1.5.2). For convenience, we list generating matrices for the
irreps of dimension larger than one of the groups D3, D4, T , and O in the conventional crystallographic
bases.

D3 = 3m = 31m; D(3) = E : 3+
z =

(
0 −1

1 −1

)
; mxx =

(
0 1

1 0

)
.

Referred to a Cartesian basis, the matrices of the 2-dimensional irrep of the group D3 are generated from

D3 : D(3) = E : 3+
z =

(
−1/2 −

√
3/2√

3/2 −1/2

)
; mxx =

(
0 1

1 0

)
.

D4 = 4mm, D(5) = E : 2 z =

(
−1 0

0 −1

)
; 4+

z =

(
0 −1

1 0

)
; myz =

(
−1 0

0 1

)
.

T = 23, D(4) = T : 2 z =


−1 0 0

0 −1 0

0 0 1

 ; 2 y =


−1 0 0

0 1 0

0 0 −1

; 3+
xxx =


0 0 1

1 0 0

0 1 0

.

The two-dimensional irrep E of O consists of the same matrices as D(3) of D3. Its kernel is the subgroup
D2 CO. Therefore, the generators 2 z and 2 y are represented by the unit matrix of D(3). The generator
3+
xxx of O replaces the generator 3+

z of D3, and mxx of D3 is replaced by 2xx in group 432 or by mxx

in group 43m.

O = 432 D(4) = T(1) : 2 z =


−1 0 0

0 −1 0

0 0 1

 ; 2 y =


−1 0 0

0 1 0

0 0 −1

;

3+
xxx =


0 0 1

1 0 0

0 1 0

 ; 2xx =


0 1 0

1 0 0

0 0 −1

.

O = 43m, D(5) = T(2) : 2 z =


−1 0 0

0 −1 0

0 0 1

 ; 2 y =


−1 0 0

0 1 0

0 0 −1

;
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3xxx+ =


0 0 1

1 0 0

0 1 0

 ; mxx =


0 1 0

1 0 0

0 0 1

.

2.5 Further developments of representation theory

2.5.1 Definitions and general procedure
Subduced and induced representations

Let H be a proper subgroup of a group G: H < G. Given an irreducible representation (irrep) D(r)(G)

of G, one can construct a representation (rep) of H by considering only those matrices of D(r)(G) which
belong to elements of H. This procedure is called subduction.

Definition (D 2.5.1.1) Consider the set of matrices which form an irrep of G. The set {D(r)(gi)} =

D(r)(G) ↓ H, gi ∈ H, is called the representation of H subduced from G.
Remark. The rep {D(r)(gi)} = D(r)(G) ↓ H of H may be irreducible or reducible.

On the other hand, given an irrep D(j)(H) of H one can construct a rep of G. This procedure is called
induction.

Consider the group-subgroup pair G > H and the coset decomposition of G relative to H:

G = g1H ∪ g2H ∪ . . . ∪ grH with g1 = e. (2.5.1)

The number r of cosets is equal to the index r = |G : H| of H in G.
Let further D(j)(H) be an irrep of H of dimension d.

Lemma 2.5.1 The set of (r d× r d) matrices

DInd(g)mt,ns =

{
D(j)(g−1

m g gn)t,s if g−1
m g gn = h ∈ H

0 if g−1
m g gn /∈ H

(2.5.2)

for all g ∈ G forms a representation of G.
Definition (D 2.5.1.2) The representation of lemma 2.5.1 of G is called an induced rep of G.
Remark. The matrix elements of DInd(g) can also be written in the form

DInd(g)mt,ns = M (g)m,nD(j)(h)t,s, where g−1
m g gn = h. (2.5.3)

The matrix M (g) is the so-called induction matrix. It consists of zeroes and ones only and is thus a
so-called monomial matrix , having exactly one ‘1’ in the mth row and nth column, determined by the
condition g−1

m g gn = h ∈ H. Correspondingly, the matrices DInd(g) have block structure with exactly
one non-zero block in every column and every row, where the block is the matrix D(j)(h), and h is fixed
by the above condition.
Equation 2.5.2 is sometimes written in the form

DInd(g) = M (g)⊗D(j)(h), (2.5.4)

where the sign ⊗ is used for the construction in equation 2.5.4 although the matrix D(j)(h) is different
for different positions in M .
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Conjugate representations and orbits

In general the induced reps are reducible. However, our aim is to obtain a procedure for the construction
of the irreps of a group G from the irreps of one of its subgroups H < G. For this we consider a pair
‘group–normal subgroup’ G BH.
Definition (D 2.5.1.3) The set of matrices (D(s)(H))g = {D(s)(g−1 h g), h ∈ H}, where g ∈ G, g /∈ H,
forms a rep of H. It is called a representation conjugate to D(s)(H) by g ∈ G.
The fact that (D(s)(H))g is a rep follows directly from its definition: (D(s)(h1))g (D(s)(h2))g =

= D(s)(g−1 h g) D(s)(g−1 h2 g) = D(s)(g−1 h1 g g−1 h2 g) = D(s)(g−1 h1 h2 g) = (D(s)(h1 h2))g.

The conjugate rep (D(s)(H))g consists of the same set of matrices as D(s)(H) but possibly assigned to
group elements different from those of D(s)(H). Therefore,

1. the dimensions of D(s)(H) and (D(s)(H))g are equal;

2. (D(s)(H))g is an irrep if D(s)(H) is.

3. If (D(s)(H))g is conjugate to D(s)(H), then these reps may or may not be equivalent.

Definition (D 2.5.1.4) The set of all inequivalent irreps (D(s)(H))g, conjugate to D(s)(H) by all elements
g ∈ G, is called the orbit O(D(s)(H)) of D(s)(H) relative to G. The number of reps in the orbit is called
the length L of the orbit O(D(s)(H)). A rep D(s)(H) is called self-conjugate if the length of its orbit is L
= 1.

Many of the possible conjugate irreps {(D(s)(H))g, g ∈ G}, are equivalent. In particular, two irreps
(D(s)(H))gi and (D(s)(H))g′i

, conjugate to (D(s)(H)) by elements gi and g′i from the same coset of the
decomposition of G relative to H: g′i = gi h′, h′ ∈ H, are equivalent:

(D(s)(h))g′i
= Ds(g′−1

i h g′i) = D(s)(h′−1 g−1
i h gi h′) = D(s)(h′−1) D(s)(g−1

i h gi) D(s)(h′) =

= D(s)(h′)−1(D(s)(h))giD
(s)(h′), for all h ∈ H.

Thus, the complete orbit O(D(s)(H)) relative to G is obtained already by conjugation with the coset
representatives of G relative to H. However, also irreps conjugate by elements from different cosets of H
relative to G may be equivalent, see Section (D 2.5.1.4).

By conjugation the complete set of irreps of H is distributed into orbits relative to G. The orbits are
disjoint because each of them contains mutually conjugated irreps of H.

Little groups, allowed irreps, and induction theorem

Given a group G BH and an irrep D(s)(H) of H, one can define the little group Gs of D(s)(H): it is the
subset of G that conjugates D(s)(H) onto an equivalent irrep.

Definition (D 2.5.1.5) The set of all elements g ∈ G for which D(s)(H) is self-conjugate forms a group
which is called the little group Gs ≡ Gs(D(s)(H)) relative to G.
Any element h ∈ H leaves D(s)(H) equivalent under conjugation. Thus, H < Gs follows. Moreover, HCGs
because HC G holds: G > Gs BH.
When Gs(D(s)(H)) = G, all conjugate irreps of D(s)(H) are equivalent. For example, the identity rep is
invariant under any conjugation. Therefore, its little group is always G. Also if H is in the centre of G,
then the G is the little group of every irrep of H. If the little group of D(s)(H) is the group H itself, then
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the rep of (D(s)(H))gi is non-equivalent to D(s)(H), if gi is any coset representative different from the
identity element.

The set of non-equivalent irreps belonging to the orbit of D(s)(H) is formed by the irreps (D(s)(H))gs
which are conjugate by the coset representatives gs ∈ G of G relative to Gs, The length of the orbit is the
index |G : Gs|.
All members of an orbit have conjugate little groups: if Gs is the little group of D(s)(H), then G(s)

gi =

gi Gs g−1
i is the little group of (D(s)(H))gi .

Our aim is to develop an induction procedure for the construction of the irreps of G, given the irreps
D(s)(H). For that it is necessary to consider the induction from the irreps of the little group Gs(D(s)(H)).
However, Gs may have many irreps. Only some of them are of interest for the derivation of the irreps of
G. These are the so-called allowed irreps (known also as allowable irreps or small irreps) according to
the following definition.

Definition (D 2.5.1.6) An irrep D(j)(Gs) ≡ D(j)(Gs(D(s)(H))) is called allowed if its subduction to the
group H contains the irrep D(s)(H) of H.

Now one can state the theorem which permits the construction of the irreps of a group G provided
the irreps of a normal subgroup H C G are known. One considers the groups G and H and the orbits
O(D(j)(H)) relative to G.

Lemma 2.5.2 Induction Theorem

(a) Let D(j)(H) be an irrep from the orbit O(D(j)(H)) with the little group Gj(D(j)(H)) relative to
G. Then each allowed irrep D(m)(Gj(D(j)(H))) of Gj(D(j)(H))induces an irrep DInd(G), whose
subduction to H yields the orbit O(D(j)(H)).

(b) All irreps of G are obtained exactly once if the procedure described in (a) is applied on one irrep
D(j)(H) from each orbit O(D(j)(H)) of irreps of H relative to G.

By this theorem the problem of determining the irreps of a group G from those of a normal subgroup
H C G is reduced to the determination of the allowed irreps of the little group Gj(D(j)(H)). For their
determination one can use the theorem stated above and the fact that the crystallographic point groups
G of 3-dimensional space are solvable groups (cf. Sections 1.5.2 and 1.5.3).

2.5.2 The special procedure for indices 2 and 3

If the group H is a normal subgroup of the group G of index 2 or index 3, then the little group Gs(D(s)(H))
of any irrep of H is either the group G or its normal subgroup H because of the prime index. Two cases
are to be distinguished:

1. The orbit has the length 2 or 3, Gs(D(s)(H)) = H.

2. The orbit has the length 1, i. e. Gs(D(s)(H)) = G.

Orbits of irreps of lengths 2 and 3

One can now make use of the obtained results for those cases where the length of the orbit is not trivial,
i. e. where the orbit is not self-conjugate. For a normal subgroup of index 2 or 3 one can decompose G
into cosets relative to H, i. e. G = H ∪ qH for index 2, and G = H ∪ qH ∪ q2H for index 3 with q ∈ G
but q /∈ H.
The orbits of conjugate irreps have the form:
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• index 2: O(D(s)(H)) = {D(s)(H), (D(s)(H))q}

• index 3: O(D(s)(H)) = {D(s)(H), (D(s)(H))q, (D(s)(H))q2}.

In both cases there is just one allowed irrep which is the irrep D(s)(H) itself, because Gs = H. An irrep
of G can be induced from D(s)(H) following the general induction procedure, see Section 2.5.1.

For example, for index 2 the auxiliary table necessary for the construction of the induced irrep has the
form, cf. Section 2.5.1

g gi g−1
i g gj g−1

i g gj Mij 6= 0

h e h e e h e = h M11

q q−1 h q q−1 h q = (h)q M22

q e q q q2 M12

q q−1 q = e e e M21

which results in the following matrices for the induced rep DInd(G):

DInd(h) =

(
D(s)(h) O

O (D(s)(h))q

)
; DInd(q) =

(
O D(s)(q2)

I O

)
. (2.5.5)

Similarly, the general procedure reduces for index 3:

DInd(h) =


D(s)(h) O O

O (D(s)(h))q O
O O (D(s)(h))q2

 ; DInd(q) =


O O D(s)(q3)

I O O
O I O

 . (2.5.6)

From the induction theorem on p. 37 follows that each orbit of conjugate irreps of H yields exactly one
irrep of G.

Self-conjugate irreps

If the length of the orbit is 1, i. e. the irrep of H is self-conjugate, then for the little group Gs = G holds.
The general theorem is now not very useful as the allowed irreps of the little groups are irreps of G which
we want to determine. However, each self-conjugate irrep of H gives rise to |G/H| irreps of G with the
same dimension as D(s)(H) has. The matrices of the irreps D(s),m(G), m = 1, 2 or m = 1, 2, 3, derived
from the self-conjugate irrep D(s)(H), are given as follows:

index 2
D(s),1(h) = D(s),2(h) = D(s)(h), h ∈ H D(s),1(q) = −D(s),2(q) = U (2.5.7)
where U is determined by the conditions

D(s)(q−1 h q) = U−1 D(s)(h)U , h ∈ H; U 2 = D(s)(q2)

index 3

D(s),m(h) = D(s)(h), m = 1, 2, 3 D(s),1(q) = εD(s),2(q) = ε2D(s),3(q) = U (2.5.8)

with ε = exp 2πi/3, where U is determined by the conditions

D(s)(q−1 h q) = U−1 D(s)(h)U , h ∈ H and U 3 = D(s)(q3)
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2.6 Exercises

2.6.1 General introduction to group representations
• Exercise 2.6.1.1. Faithful representation of 4mm

(a) Construct a two-dimensional faithful representation D of 4mm starting from the matrices of

its generators: D(4) =

(
0 −1

1 0

)
D(m100) =

(
−1 0

0 1

)
(b) Determine the matrices of the two-dimensional faithful representation D′ of 4mm with respect

to the new basis a′ = 1
2 (a + b) and b′ = 1

2 (−a + b).

(c) Show that the two representations D and D′ of the group 4mm determined in (a) and (b)
are equivalent, i. e. show that there exists a matrix X such that X−1D(g)X = D’(g), with
g ∈ 4mm.

Hint : The determination of X such that D’ = X−1DX is equivalent to determine X such that
XD’ = DX with the additional condition that det X 6= 0.

• Exercise 2.6.1.2. Irreps of the cyclic group C4

The cyclic group C4 of order 4 is generated by the element < g >. Two of the following three
representations of C4 are equivalent:

D1(g) =

(
i 0

0 −i

)
D2(g) =

(
0 −i
i 0

)
D3(g) =

(
0 −1

1 0

)
Determine which of the two are equivalent and find the corresponding similarity matrix. Can you
give an argument why the third representation is not equivalent?

• Exercise 2.6.1.3. Schur Lemma

(i) Determine the general form of the matrix B that commutes with the matrices of all elements
of the two-dimensional irrep E of 4mm: E(g)B = BE(g), g ∈ 4mm (∗), where

E(4) =

(
0 −1

1 0

)
and E(m10) =

(
−1 0

0 1

)
Hint : To determine B it is sufficient to consider the commuting equations (∗) for the generators
of 4mm.

(ii) Show that the irreps of Abelian groups are one-dimensional.

• Exercise 2.6.1.4. Number and dimensions of irreps

1. Determine the number and dimensions of the irreps of group 222. Can you write down the
irrep table of the group 222?

2. Determine the number and dimensions of the irreps of the group 4mm. What about the irreps
of 422? And those of 4/mmm?

3. Determine the number and dimensions of the irreps of the group 3m. What about the irreps
of 32? And those of 3̄m?

• Exercise 2.6.1.5. Character tables of point-group irreps

1. Determine the character table of the group 4mm. What about the character table of 422?



40 CHAPTER 2. THE IRREPS OF THE CRYSTALLOGRAPHIC POINT GROUPS

2. Consider the character table of the group 432. Determine the characters of the two-dimensional
irrep E.

432 1 (1) 2100 (3) 2110 (6) 3+
111 (8) 4+

100 (6)

A1 1 1 1 1 1

A2 1 1 −1 1 −1

E ? ? ? ? ?

T1 3 −1 −1 0 1

T2 3 −1 1 0 −1

• Exercise 2.6.1.6. Consider the group 222 and its irreps. Show that the following matrices form a
representation of 222 that is reducible:

D(e) = D(2001) =

(
1 0

0 1

)
and D(2100) = D(2010) =

(
0 1

1 0

)
1. Decompose the reducible representation into irreps of 222;

2. Calculate the matrix S that reduces the reducible representationD into irreducible constituents
Di: D(G)S = S[⊕Di(G)].

• Exercise 2.6.1.7. Vector representation of 4mm

1. Construct the vector representation of the point group 4mm from the ‘general position’ of the
space-group table of P4mm in IT A (cf. Fig. ??, page ??).

2. What is the difference between this vector representation and that can be obtained from the
the space-group data of P4bm in IT A (cf. Fig. 4.2, page 56)?

3. Is the vector representation of point group 4mm reducible or irreducible? Determine the general
form of a matrix that commutes with all matrices of the vector representation of 4mm.

4. If it is reducible, decompose it into irreducible constituents.

• Exercise 2.6.1.8. Consider the character table of the irreps of the group 422 and the following three
reducible representations of the group specified by their characters:

ψ1(e) = 6, ψ1(2100) = 2, ψ1(4) = ψ1(2100) = ψ1(2110) = 0

ψ2(e) = 10, ψ1(2100) = 6, ψ2(4) = ψ1(2100) = −2 and ψ2(2110) = 0

ψ3(e) = 11, ψ1(2100) = 7, ψ1(4) = ψ1(2100) = ψ1(2110) = −3

Determine the decomposition of the reducible representations into irreps of 422.

2.6.2 Direct product of irreps and subduced representations

• Exercise 2.6.2.1. Kronecker product of matrices

Calculate the Kronecker products A
⊗

B and B
⊗

A of the following two matrices

A =

(
−1 −2

1 2

)
and B =


1 1 2

1 −1 1

0 2 −1


What is the trace of the matrix A

⊗
B? And of B

⊗
A?
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• Exercise 2.6.2.2. Irrep multiplication tables

1. Construct the irrep multiplication table of the group 4mm

2. Construct the irrep multiplication table of the group 3m

• Exercise 2.6.2.3. Symmetrized and anti-symmetrized irreps squares

1. Calculate the characters of the symmetrized {E}2 and antisymmetrized [E]2 squares of the
two dimensional irreps of 4mm. If {E}2 and/or [E]2 are reducible, decompose them into irreps
of 4mm.

2. The same for the two-dimensional irrep of the group 3m.

• Exercise 2.6.2.4. Irreps of direct-product groups

1. Determine the character table of the group 222 ∼= 2× 2′ from the character table of the cyclic
groups 2.

2. Determine the character table of the group 4/mmm ∼= 422 × 1̄ starting from the character
tables of the groups 422 and 1̄.

3. Determine the character table of the group 4/m ∼= 4× 1̄ starting from the character tables of
the cyclic groups 4 and 1̄.

4. determine the character table of the group 6 ∼= 3 × 2 from the character tables of the cyclic
groups 3 and 2.

• Exercise 2.6.2.5.

Consider the two-dimensional irrep E of point group 4mm (see Problem 2.6.1.7 and Section 4.4.2)
and its subgroup 4.

1. Is the subduced representation E ↓ 4 reducible or irreducible ?

2. If reducible, decompose it into irreps of 4.

3. Determine the corresponding subduction matrix S , defined by
S−1 (E ↓ 4)(h)S = ⊕miDi(h), h ∈ 4.

• Exercise 2.6.2.6.

Consider the two-dimensional irrep E of point group 4mm (see Problem 2.6.1.7 and Section 4.4.2)
and its subgroup mm2.

1. Is the subduced representation E ↓ mm2 reducible or irreducible ?

2. If reducible, decompose it into irreps of mm2.

3. Determine the corresponding subduction matrix S , defined by
S−1 (E ↓ mm2)(h)S = ⊕miDi(h), h ∈ mm2.

• Exercise 2.6.2.7.

Construct the general form of the matrices of a representation of G induced by the irreps of a
subgroup H < G of index 2.

• Exercise 2.6.2.8.

Construct the general form of the matrices of a representation of G induced by the irreps of a normal
subgroup HC G of index 3.
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• Exercise 2.6.2.9.

Determine the representations of the group 4mm induced from the irreps of its subgroup {1,m010}
(for the necessary data see Sections 4.3 and 4.5). What are the dimensions of the induced represen-
tations of 4mm? Are they reducible or irreducible?

• Exercise 2.6.2.10.

Consider the two-dimensional irrep E of point group 4mm (cf. Section 4.4.2):

1. Is the direct-product representation E ⊗ E reducible or irreducible?

2. If reducible, find its decomposition into irreps of 4mm;

3. If the functions {fx, fy} form the basis of E, can you guess if it would be possible to construct
invariants from the functions of the product carrier space {f2

x , fxfy, fyfx, f
2
y }?

4. If possible, how many invariants can be constructed, and what are the corresponding linear
combinations of fifj?



Chapter 3

Irreducible representations of space
groups

For the derivation of all irreps of a space group we use the method of constructing the irreps of a group G
from those of a normal subgroup HCG (can be demonstrated in a straightforward way by the derivation
of the irreps of point groups). The main steps of the procedure are:

1. Construct all irreps of H
2. Distribute the irreps of H into orbits under G and select one member of each orbit

3. Determine the little group for each selected irrep of H
4. Find the allowed (small) irreps of the little group

5. The irreps of G are constructed from the allowed irreps of the little group by induction.

The set of all irreps of G is complete if the induction is applied to all allowed irreps of the little group for
each selected irrep of H.
The translation group T is a normal subgroup of every space group. The irreps of T and their distribution
into orbits will be discussed in Section 3.1 and Section 3.2. The determination of the little groups of the
selected irreps (step 3) and the induction procedure (step 5) are dealt with in Sections 3.2 and 3.4 The
most involved step in the above procedure is the determination of the allowed irreps of the little group
(step 4). In most books on irreps of space groups this difficulty is removed by applying the theory of
the so-called projective reps. Here we have preferred another approach for the construction of the small
irreps. It is based on the fact that all space groups are solvable groups, i. e. for every space group one can
construct a composition series

G BH1 BH2 . . . B T

such that all factor groups Hi/Hi+1 are cyclic groups of order 2 or 3 (for details, cf. Section 1.5.2).
For the space-group representation theory we follow the terminology of BC and CDML.

3.1 Representations of the translation group T

Let G be referred to a primitive basis. The infinite set of translations (I , t), with t being the column of
integers (n1, n2, n3) is based on discrete cyclic groups of infinite order. For the following, this group will

43
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be replaced by a (very large) finite set in the usual way: One assumes the Born-von Karman boundary
conditions

(I , t i)Ni = (I , N i) = (I, o) (3.1.1)

to hold, where t i = (1,0,0), (0,1,0), or (0,0,1) and Ni is a large integer for i = 1, 2, or 3, respectively.
Then for any lattice translation ( I, t)

(I, N t) = (I, o) holds, (3.1.2)

where N t is the column (N1n1, N2n2, N3n3)T (here ( )T stands for transposed relative to rows). If the
(infinitely many) translations mapped in this way onto (I, o) form a normal subgroup T 1 of G, then there
exists a factor group G′ = G/T 1 of G relative to T 1 with translation subgroup T ′ = T /T 1 which is finite
and is sometimes called the finite space group.

Only the irreducible representations (irreps) of these finite space groups will be considered. The definition
of space-group type, symmorphic space group, etc. can be transferred to these groups. Because T is
Abelian, T ′ is also Abelian. Replacing the space group G by G′ means that the particularly well-developed
theory of representations of finite groups can be applied. For convenience, the prime ′ will be omitted
and the symbol G will be used instead of G′, T ′ will be denoted by T in the following.

Because T , i.e. former T ′, is Abelian, its irreps Γ(T ) are one-dimensional and consist of (complex) roots
of unity. Due to the equations (3.1.1) and (3.1.2) the irreps Γq1q2q3 [(I, t)] of T have the form

Γq1q2q3 [(I, t)] = e−2πi(q1
n1
N1

+q2
n2
N2

+q3
n3
N3

), (3.1.3)

where nk, qj ,= 0, 1, 2, . . . , Nj − 1, j = 1, 2, 3, nk, and qj are integers.

Given a primitive basis a1, a2, a3 of L, mathematicians and crystallographers define the basis of the
reciprocal lattice a∗1, a∗2, a∗3 (or basis of the dual lattice ) L∗ by

ai · a∗j = δij , (3.1.4)

where a·a∗ means the scalar product between the vectors, and δij is the unit matrix (see, e.g., International
Tables for Crystallography, Vol. B (2008), Subsection 1.1.3). Texts on physics of solids redefine the basis
a∗1, a∗2, a∗3 of the reciprocal lattice L∗, lengthening each of the basis vectors a∗j by the factor 2π. Therefore,
in the physicist’s convention the relation between the bases of direct and reciprocal lattice reads, cf. BC,
p. 86:

ai · a∗j = 2πδij . (3.1.5)

In the present chapter only the physicist’s basis of the reciprocal lattice is employed, and hence the use
of a∗j should not lead to misunderstandings. The set of all vectors K1,

K = K1a
∗
1 +K2a

∗
2 +K3a

∗
3, (3.1.6)

Ki integer, is called the lattice reciprocal to L or the reciprocal lattice L∗ 2.
If one adopts the notation of ITA , the basis of direct space is denoted by a row (ai)=(a1, a2, a3). For
the reciprocal space, the basis is described by a column (a∗i )

T= (a∗1, a∗2, a∗3)T.

1In crystallography vectors are designated by small bold-faced letters. With K we make an exception in order to follow
the tradition of physics. A crystallographic alternative could be t∗.

2The lattice L is often called the direct lattice. These names are historically introduced and cannot be changed anymore,
although equations (3.1.4) and (3.1.5) show that essentially none of the lattices is preferred: they form a pair of mutually
reciprocal lattices.
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As is well known, the Bravais type of the reciprocal lattice L* is not necessarily the same as that of
its direct lattice L. If W is the matrix of a (point-) symmetry operation of the direct lattice, referred
to its basis (ai), then W−1 is the matrix of the same symmetry operation of the reciprocal lattice but
referred to the dual basis (a∗i )

T. This does not affect the symmetry because in a (symmetry) group with
each element its inverse also belongs to the group. Therefore, the (point) symmetries of a lattice and its
reciprocal lattice are always the same. However, there may be differences in the matrix descriptions due
to the different orientations of L and L∗ relative to the symmetry elements of G and due to the reference
to the different bases (ai) and (a∗i )T. For example, if L has the point symmetry (Hermann-Mauguin
symbol) 3m1, then the symbol for the point symmetry of L∗ is 31m and vice versa.

Let (ai) be a conventional basis of the lattice L of the space group G. With the relations (3.1.5), ki = qi/Ni,
and k =

∑3
i=1 kia

∗
i , equation (3.1.3) can be written

Γq1q2q3 [(I,t)] = Γk[(I,t)] = exp− i(k t). (3.1.7)

Equation (3.1.7) has the same form if a primitive basis (pi) of L has been chosen. In this case the vector
k is given by k =

∑3
i=1 kpi p

∗
i .

Let a primitive basis (pi) be chosen for the lattice L. The set of all vectors k (known as wave vectors)
forms a discontinuous array. Consider two wave vectors k and k′ = k + K, where K is a vector of the
reciprocal lattice L∗. Obviously k and k′ describe the same irrep of T . Therefore, to determine all irreps
of T it is necessary to consider only the wave vectors of a small region of the reciprocal space, where
the translation of this region by all vectors of L∗ fills the reciprocal space without gap or overlap. Such
a region is called a fundamental region of L∗ (the nomenclature in literature is not quite uniform. We
follow here widely adopted definitions).

The fundamental region of L∗ is not uniquely determined. Two types of fundamental regions are of interest
in this chapter:

1. the first Brillouin zone or simply Brillouin zone, abbreviated BZ, is that range of k space around
o for which | k | ≤ | K− k | holds for any vector K ∈ L∗ (Wigner-Seitz cell or domain of influence
in k space). The Brillouin zone is used in books and articles on irreps of space groups;

2. the crystallographic unit cell in reciprocal space, for short: unit cell, is the set of all k vectors with
−1/2 < ki ≤ 1/2. It corresponds to the unit cell used in crystallography for the description of
crystal structures in direct space. However, the center is here the o vector.

3.2 Orbits of irreps of T and little groups

In the previous section the irreps of T have been determined. These irreps have now to be classified into
orbits relative to G.
By definition the orbit of an irrep Γk(T ) includes all non-equivalent irreps Γk′(T ) for which there exists
a matrix-column pair (W ,w) of g ∈ G such that

Γk′(I , t) = Γk((W , w)−1(I , t)(W , w)), (I , t) ∈ T .
From (W,w)−1 (I, t) (W,w) = (I,W−1t) follows
Γk′(I, t) = Γk(I,W−1t) = exp−(ik (W−1 t)) = exp(−i (kW−1) t). Thus,

k′ = kW−1 + K, K ∈ L∗ (3.2.8)
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By the lattice vector K ∈ L∗ the vector k′ is brought back to the fundamental region in case it would
be outside otherwise.

Let k be some k vector and W be the matrices of G.

Definition (D 3.2.0.1) The set of all matrices W ∈ G which leave the vector k invariant or change it to
an equivalent one, i. e.

k = kW + K, K ∈ L∗, (3.2.9)

forms a group which is called the little co-group G k
of k. The vector k is called a general k vector if

G k = {I}; otherwise G k > {I}, and k is called a special k vector .

The little co-group G k is a subgroup of the point group G. Consider the coset decomposition of G relative
to G k.

Definition (D 3.2.0.2) If {Wm} is a set of coset representatives of G relative to G k, then the set
?(k) = {kWm + K} is called the star of k and the vectors kWm + K are called the arms of the star.

Here again the lattice vector K is necessary if kWm is outside the fundamental region.

An orbit of Γk(T ) relative to G comprises all irreps Γk′(T ) with k′ belonging to ?k. From the classification
of all k vectors into stars follows the distribution of the irreps of T into orbits relative to G. The length
of an orbit O(Γk(T )) is equal to the number of arms of ?k which is the index of the little co-group Gk
of k in the point group G.

If k is general, then there are |G| vectors (arms) from the star of k in each fundamental region. If k is

special with little co-group Gk ≥ {I}, then the number of arms of the star of k in the fundamental region

is |G|/|Gk|.
According to the induction theorem, lemma 2.5.1, in order to obtain each irrep of G exactly once, one
needs one k vector per star. A simply connected part of the fundamental region which contains exactly
one k vector of each star of k, is called a representation domain Φ . Thus, for the determination of all
irreps of G it is sufficient to consider the k vectors belonging to the representation domain.

We are now in the position to define the little group Gk if the space group G, its translation subgroup
T , and an irrep Γk(T ) are given. The little group is a space group and consists of all those elements of
G whose rotation parts W leave either k unchanged or invert it into an equivalent vector.

Definition (D 3.2.0.3) The group of all elements (W ,w) ∈ G for which W ∈ G k, is called the little
group Gk of k.

3.3 Allowed irreps of the little group

The irreps of space groups are obtained by induction from the allowed irreps of the little groups Gk of
k. If Dk,i(Gk) is an allowed irrep of Gk, then Dk,i(I, t) = exp (−ik t) I holds. The matrix I is the
identity matrix with dim(I ) = dim(Dk, i(Gk)).

The determination of the allowed irreps is trivial for a k vector in general position. Then its star contains
|G| arms, i. e. its little group is the translation group. For a given k vector it has just one allowed irrep,
namely the one which belongs to the k vector considered. Thus, every star in a general position contributes
exactly one irrep of G.
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Under certain conditions one can express the allowed irreps of Gk in terms of the irreps D
k,i

of the little
co-group Gk for a special k vector.

Lemma 3.3.1 Let one of the following two conditions be satisfied

1. k is a vector of the interior of the BZ

2. Gk is a symmorphic space group.

Then the number of non-equivalent allowed irreps Dk, i of the little group Gk is the same as the number
of non-equivalent irreps D

k, i
of the little co-group Gk, and their matrices are of the form:

Dk, i(W,w) = exp−(ik w)D
k, i

(W ), (W,w) ∈ Gk.

In this way the allowed irreps of Gk are expressed by irreps of the point groups. Only certain stars on the
surface of the BZ give rise to difficulties for non-symmorphic space groups. These cases can be solved by
the method of deducing all irreps of a group G from the irreps of a normal subgroup H C G with index
2 or 3. Since the little groups are space groups and thus solvable groups, one can construct for them
composition series with factor groups of order 2 or 3. The irreps of any non-symmorphic space group
can be constructed step by step following the chain of normal subgroups, starting from the irreps of that
symmorphic subgroup H0 of G which has the smallest index. For each space group there is always at least
one symmorphic subgroup in the composition series from T to G: its translation subgroup T .
Only the allowed irreps of the little group Gk are necessary for the construction of the irreps of G.
However, it is straightforward to show that the allowed irreps of a symmorphic subgroup Hk

0 < Gk yield
allowed irreps of Gk. On the other hand, non-allowed irreps of Hk

0 < Gk yield non-allowed irreps of Gk.
In other words, in order to obtain all allowed irreps of Gk it is only necessary to consider the allowed
irreps of the symmorphic subgroup Hk

0 .

Consider a group-subgroup chain Gk BHk
0 with index 2 or 3. The irreps of Gk are obtained from those

of Hk
0 by the formulae discussed in Section 2.5.2. The allowed irreps of Hk

0 are those whose matrices of
the translation elements are of the form:

Dk, i
Hk

0

(I, t) = exp−(ik t) I . (3.3.10)

For self-conjugate irreps allowed irreps of Hk
0 yield allowed irreps of Gk, see equation 2.5.7 and 2.5.8.

For induction from non-self-conjugate irreps of Hk
0 , see equations 2.5.5 and 2.5.6, the above result is also

valid

(Dk, i
Hk

0

(I, t))(W ,w ) = Dk, i
Hk

0

[(W,w)−1 (I, t)(W,w)] = exp−(i (kW−1 t)) I = exp−(ik t) I , (3.3.11)

because the coset representative (W,w) of Gk relative to Hk
0 leaves the k vector invariant (up to a lattice

vector K ∈ L∗). From the discussion is also clear that non-allowed irreps of Hk
0 give rise to non-allowed

irreps of Gk.

3.4 Induction procedure
All irreps of a space group G are obtained by taking a vector k from each star and inducing irreps of G
from all non-equivalent allowed irreps Dk, i of the corresponding little group Gk. If dim(Dk, i) = r and
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s is the order of the star of k, then the induced irrep D∗k, i(G) has the dimension r s. The matrices of
D∗k, i(G) can be arranged in blocks Mi j of dimension r, with one non-zero block in each row or column
of blocks.

If we choose the elements (W i, w i), i = 1, . . . , s as representatives of the cosets of G relative to Gk:
G = Gk ∪ (W 2, w2)Gk ∪ . . . ∪ (W s, ws)Gk,
then the block i j is zero unless (W i, w i)

−1 (W , w) (W j , w j) ∈ Gk.
As was already discussed in Section 3.3, the little group Gk of k is the translation group T if k is a vector
of general position. Then Γk(T ) is the only allowed irrep.

The corresponding induced irrep of G has a dimension equal to the length of the orbit ∗k = {k1, k2, . . . , kn},
where ki = kW i + K with W i ∈ G.
The representation matrices corresponding to the elements of T are diagonal matrices, where the elements
are the irreps of T belonging to the orbit of k.

The representation matrices for any element of G and arbitrary k vector are obtained by the general
induction method, see Section 2.5.1. For better efficiency it is advisable to calculate the non-zero blocks
of the induction matrix first. Very often, for a better overview of the irreps of G, their matrices are
presented by the non-zero blocks of the induction matrix and the corresponding submatrices of the little-
group irreps.

3.5 Exercises

3.5.1 Irreducible representations of space groups
• Exercise 3.5.1.1. Irreducible representations of the group P4mm(99)

Consider the k-vectors Γ(000) and X (0 1
20) of the group P4mm.

1. Determine the little groups, the k-vector stars, the number and the dimensions of the allowed
little-group irreps, the number and the dimensions of the corresponding full irreps of the group
P4mm. Construct the allowed little group irreps of P4mm for Γ(000) and X(0 1

20);
2. Calculate a set of coset representatives of the decomposition of the group P4mm with respect

to the little groups of the k-vectors Γ(000) and X(0 1
20), and construct the corresponding full

space group irreps of P4mm.

• Exercise 3.5.1.2. Irreducible representations of the group P4bm(100)

Consider the k-vectors Γ(000) and X(0 1
20) of the group P4bm.

1. Determine the irreps of space group P4bm, k = Γ(000). Is there a difference to the irreps of
space group P4mm, k = Γ(000) ?

2. Determine the allowed little-group irreps of space group P4bm for k=X (0 1
20). Compare the

obtained irreps with those obtained in the exercise with P4mm, k = X(0 1
20).

• Exercise 3.5.1.3. Space-group irreps for a general k-vector

Consider a general k-vector of a space group G. Determine its little co-group, the k-vector star.
How many arms has its star? How many full-group irreps will be induced and of what dimension?
Write down the matrix of the full-group irrep of a general k-vector for a translation, t ∈ T G .

• Exercise 3.5.1.4. Irreducible representations of the group P213 (198)

Consider the k-vectors Γ(000) and k = R( 1
2

1
2

1
2 ) of the group P213.
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1. Determine the little groups, the k-vector stars, the number and the dimensions of the little-
group irreps, the number and the dimensions of the corresponding irreps of the group P213.
Construct the little group irreps of P213 for Γ(000) and k = R( 1

2
1
2

1
2 );

2. Calculate a set of coset representatives of the decomposition of the group P213 with respect
to the little groups of the k-vectors Γ(000) and k = R( 1

2
1
2

1
2 ), and construct the corresponding

full space group irreps of P213.

3.5.2 Tools of the Bilbao Crystallographic Server for Space-group Irreps
• Exercise 3.5.2.1.

1. Obtain the irreps for the space group P4mm(99) for the k-vectors Γ(000) and X(0 1
20) using

the program REPRES. Compare the results with the solutions of Problem 3.5.1.1.
2. Use the program REPRES for the derivation of the irreps of a general k-vector of the group

P4mm and compare the results with the results of Problem 3.5.1.3.
3. Use the program Representations SG for the derivation of the irreps for the k-vectors Γ(000),

X(0 1
20) and of a general k-vector of the group P4mm and compare the results with the results

of Problems 3.5.1.1 and 3.5.1.3.

• Exercise 3.5.2.2.

1. Obtain the irreps for the space group P4bm(100) for the k-vectors Γ(000) and X(0 1
20) using

the program REPRES. Compare the results with the solutions of Problem 3.5.1.2.
2. Use the program REPRES for the derivation of the irreps of a general k-vector of the group

P4bm and compare the results with the results of Problem 3.5.1.3.
3. Use the program Representations SG for the derivation of the irreps for the k-vectors Γ(000),

X(0 1
20) and of a general k-vector of the group P4mm and compare the results with the results

of Problems 3.5.1.2 and 3.5.1.3.

• Exercise 3.5.2.3.
The star of the wave vector X( 1

200) in the cubic group Pm-3m(221) consists of three arms: ∗X =
{( 1

200), (0 1
20), (00 1

2 )}
(i) Determine the wave-vector correlations (splttings) of k-vector star ∗X for the group-subgroup

chain Pm3̄m(a,b, c) > P4mm(a,b, c)

(ii) How the wave-vector correlations of ∗X change if unit cell of the low-symmetry group is doubled
along c axis, i. e. the group-subgroup chain is of the type Pm3̄m(a,b, c) > P4mm(a,b, 2c)

(iii) Compare your results with the output of the program CORREL .

• Exercise 3.5.2.4.
Using the program COMPATIBILITY RELATIONS determine the connectivity of the electronic energy
bands of Ge, symmetry group Fd3̄m(227), between the high symmetry points Γ(000) and X( 1

20 1
2 )

over the symmetry line ∆(u0u) (cf. BZ data of Fd3̄m provided by the program KVEC).

• Exercise 3.5.2.5.

(a) Consider the space group P4mm and its k-vector X(0 1
20). Determine the wave-vector selection

rules for the product of the k-vector stars: ∗X(0 1
20)⊗ ∗X(0 1

20).
(b) Consider the space group P4/mmm(No. 123) and its k-vector X(0 1

20) and ∆(0, 0.27, 0). De-
termine the wave-vector selection rules for the product ∗∆(0, 0.27, 0)⊗ ∗X(0 1

20).
(c) Compare your results with the output of the program DIRPRO .
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Appendix

The Appendix contains the procedures and necessary basic data for the exercises: multiplication tables,
matrices, character tables, etc.

4.1 Procedure for the construction of the irreps of space groups.
The main steps for constructing the irreps of space groups can be summarized as follows

1. Space-group information

(a) Decomposition of the space group G in cosets relative to its translation subgroup T , see IT A
(1996)
G = T ∪ (W 2, w2) T ∪ . . . ∪ (W p, wp) T

(b) Choice of a convenient set of generators of G, see IT A (1996)

2. k-vector information

(a) Choice of a k vector (from the rep domain Φ of the BZ). The coefficients of the k vector have
to be referred to the dual basis of that basis relative to which the space group is defined:

(b) Determination of the little co-group Gk of k:

Gk = {W̃ i ∈ G : k = k W̃ i + K , K ∈ L∗}
(c) Determination of the k-vector star ?(k)

?(k) = {k, k2, . . . ,ks}, with k = kW j , j = 1, . . . s, whereW j are the coset representatives

of G relative to Gk.
(d) Determination of the little group Gk

Gk = {(W̃ i, w̃ i) ∈ G : W̃ i ∈ G
k}

(e) Decomposition of G relative to Gk
An obvious choice of coset representatives of G relative to Gk is the set of elements {qi =
(W i, wi), i = 1, . . . , s}
where W i are the coset representatives of G relative to Gk

G = Gk ∪ (W 2, w2)Gk ∪ . . . (W s, ws)Gk

3. Allowed irreps of Gk

50
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(a) If Gk is a symmorphic space group or k is inside the BZ, then the non-equivalent allowed irreps

Dk, i of Gk are related to the non-equivalent irreps D
k, i

of Gk in the following way:
Dk, i(W̃ i, w̃ i) = exp−(ik wi) D

k, i
(W̃ i)

(b) If Gk is a non-symmorphic space group and k is on the surface of the BZ, then:

i. Look for a symmorphic subgroup Hk
0 (or an appropriate chain of normal subgroups) of

index 2 or 3
ii. Find the allowed irreps Dk, i

H0
of Hk

0 , i. e. those for which is fulfilled

Dk, i
H0

(I , t) = exp−(ik t) I and distribute them into orbits relative to Gk

iii. Determine the allowed irreps of Gk using the results for the induction from the irreps of
normal subgroups of index 2 or 3

4. Induction procedure for the construction of the irreps D?k, i of G from the allowed irreps Dk, i of G
The representation matrices of D?k, i(G) for any element of G can be obtained if the matrices for
the generators {(W l, w l), l = 1, . . . , k} of G are available (step 1a).

(a) Construction of the induction matrix.
The elements of the little group Gk = {(W̃ j , w̃ j)} (step 2d) and the coset representatives
{q1, . . . , qs} of G relative to Gk (step 2e) are necessary for the construction of the matrix
M (W l, w l)

(W l, w l) qi q−1
i q−1

i (W l, w l) q−1
i (W l, w l)qj M(W l, w l)ij 6= 0

. . . . . . . . . . . . . . .

(b) Matrices of the irreps D?k,m of G:
D?k,m(W l, w l)iµ, jν = M(W l, w l)ij Dk,m(W̃ p, w̃p)µ ν ,

where (W̃ p, w̃p) = q−1
i (W l, w l) qj .

All irreps of the space group G for a given k vector are obtained considering all allowed irreps
Dk,m of the little group Gk obtained in step 3.

4.2 Induction procedure for the case of normal subgroups of
index 2 or 3

Start from the irreps Ds of a normal subgroup HC G, where |G/H| = 2 or 3.

1. Characterize the group-subgroup chain G BH by

(a) choice of appropriate generators for H and G
(b) decompose G into cosets relative to H with coset representative q: q ∈ G but q /∈ H

i. G = H ∪ qH for index 2
ii. G = H ∪ qH ∪ q2H for index 3.

2. Determine the orbits of irreps of H relative to G
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• index 2:

– O(Ds(H)) = {Ds(H) = (Ds(H))q} (self-conjugate)
– O(Ds(H)) = {Ds(H), (Ds(H))q}

• index 3:

– O(Ds(H)) = {Ds(H) = (Ds(H))q = (Ds(H))q2} (self-conjugate)
– O(Ds(H)) = {Ds(H), (Ds(H))q, (Ds(H))q2}

3. Construct the irreps of G

• index 2

– {Ds(H)}

D1(h) = D2(h) = Ds(h), h ∈ H D1(q) = −D2(q) = U

where U is determined by the conditions

Ds(q−1 h q) = U−1 Ds(h)U , h ∈ H; U 2 = Ds(q2)

– {Ds(H), (Ds(H))q}

D(h) =

(
Ds(h) O

O (Ds(h))q

)
; D(q) =

(
O Ds(q2)

I O

)
.

• index 3

– {Ds(H)}

Dm(h) = Ds(h), m = 1, 2, 3 Dm(q) = ωmU

where U is determined by the conditions

Ds(q−1 h q) = U−1 Ds(h)U , h ∈ H; ω3U 3 = Ds(q3)

– {Ds(H), (Ds(H))q, (Ds(H))q2}

D(h) =


Ds(h) O O

O (Ds(h))q O
O O (Ds(h))q2

 ; D(q) =


O O Ds(q3)

I O O
O I O

 .
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4.3 Multiplication (Cayley) tables

4.3.1 Symmetry elements and multiplication table of the group 3m

3m 1 3+ 3− m11 m10 m01

1 1 3+ 3− m11 m10 m01

3+ 3+ 3− 1 m01 m11 m10

3− 3− 1 3+ m10 m01 m11

m11 m11 m10 m01 1 3+ 3−

m10 m10 m01 m11 3− 1 3+

m01 m01 m11 m10 3+ 3− 1

4.3.2 Symmetry elements and multiplication table of the group 4mm

4mm 1 2 4+ 4− m01 m10 m11̄ m11

1 1 2 4+ 4− m01 m10 m11̄ m11

2 2 1 4− 4+ m10 m01 m11 m11̄

4+ 4+ 4− 2 1 m11̄ m11 m10 m01

4− 4− 4+ 1 2 m11 m11̄ m01 m10

m01 m01 m10 m11 m11̄ 1 2 4− 4+

m10 m10 m01 m11̄ m11 2 1 4+ 4−

m11̄ m11̄ m11 m01 m10 4+ 4− 1 2

m11 m11 m11̄ m10 m01 4− 4+ 2 1

4.4 Matrix groups; generating matrices

4.4.1 Matrices of the group 3m

1 =

(
1 0

0 1

)
; 3+ =

(
0 −1

1 −1

)
; 3− =

(
−1 1

−1 0

)
;

m11 =

(
0 −1

−1 0

)
; m10 =

(
−1 1

0 1

)
; m01 =

(
1 0

1 −1

)
;
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4.4.2 Matrices of the group 4mm

1 =

(
1 0

0 1

)
; 2 =

(
−1 0

0 −1

)
; 4+ =

(
0 −1

1 0

)
; 4− =

(
0 1

−1 0

)
;

m10 =

(
−1 0

0 1

)
; m01 =

(
1 0

0 −1

)
; m11 =

(
0 −1

−1 0

)
; m11̄ =

(
0 1

1 0

)
.

4.5 Character tables

4.5.1 Character table of 222 Character table of 32

222 e a b c

A 1 1 1 1

B1 1 1 −1 −1

B2 1 −1 1 −1

B3 1 −1 −1 1

32 1 (1) 3 (2) 2 (3)

A1 1 1 1

A2 1 1 −1

E 2 −1 0

4.5.2 Character table of 4 Character table of 4mm

4 1 2 4+ 4−

A 1 1 1 1

B 1 1 −1 −1
1E 1 −1 −i i
2E 1 −1 i −i

4mm 1 (1) 2 (1) 4 (2) m01 (2) m11 (2)

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 1 −1 1 −1

B2 1 1 −1 −1 1

E 2 −2 0 0 0

4.5.3 Character table of 23

The value of ε is
exp 2πi/3.

emph23 e (1) a (3) q (4) q2 (4)

A 1 1 1 1
1E 1 1 ε ε∗

2E 1 1 ε∗ ε

T 3 −1 0 0
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4.6 Space-group data

Figure 4.1: ITA space-group data for P4mm

Tetragonal 4mm C1
4v P4mm

Patterson symmetry P4/mmm P4mm No. 99

Origin on 4mm

Asymmetric unit 0 ≤ x ≤ 1
2 ; 0 ≤ y ≤ 1

2 ; 0 ≤ z ≤ 1; x ≤ y

Symmetry operations

(1) 1 (2) 2 0,0,z (3) 4+ 0,0,z (4) 4− 0,0,z
(5) m x,0,z (6) m 0,y,z (7) m x, x̄,z (8) m x,x,z

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

8 g 1 (1) x,y,z (2) x̄, ȳ,z (3) ȳ,x,z (4) y, x̄,z
(5) x, ȳ,z (6) x̄,y,z (7) ȳ, x̄,z (8) y,x,z

no conditions

Special:

4 f . m . x, 1
2 ,z x̄, 1

2 ,z
1
2 ,x,z

1
2 , x̄,z no extra conditions

4 e . m . x,0,z x̄,0,z 0,x,z 0, x̄,z no extra conditions

4 d . . m x,x,z x̄, x̄,z x̄,x,z x, x̄,z no extra conditions

2 c 2 m m . 1
2 ,0,z 0, 1

2 ,z hkl: h+ k = 2n

1 b 4 m m 1
2 ,

1
2 ,z no extra conditions

1 a 4 m m 0,0,z no extra conditions

Symmetry of special projections
Along [001] p4mm
a′ = a b′ = b
Origin at 0,0,z

Along [100] p1m1
a′ = b b′ = c
Origin at x,0,0

Along [110] p1m1
a′ = 1

2 (−a+b) b′ = c
Origin at x,x,0

417
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Figure 4.2: ITA space-group data for P4bm (selection)
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Figure 4.3: ITA space-group data for P213 (selection)



C mm2 C11
2v mm2 Orthorhombic

No. 35 C mm2 Patterson symmetry C mmm

Origin on mm2

Asymmetric unit 0 ≤ x ≤ 1
4 ; 0 ≤ y ≤ 1

2 ; 0 ≤ z ≤ 1

Symmetry operations
For (0,0,0)+ set
(1) 1 (2) 2 0,0,z (3) m x,0,z (4) m 0,y,z

For ( 1
2 ,

1
2 ,0)+ set

(1) t( 1
2 ,

1
2 ,0) (2) 2 1

4 ,
1
4 ,z (3) a x, 1

4 ,z (4) b 1
4 ,y,z

294
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CONTINUED No. 35 C mm2

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t( 1
2 ,

1
2 ,0); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

(0,0,0)+ ( 1
2 ,

1
2 ,0)+

Reflection conditions

General:

8 f 1 (1) x,y,z (2) x̄, ȳ,z (3) x, ȳ,z (4) x̄,y,z hkl: h+ k = 2n
0kl: k = 2n
h0l: h = 2n
hk0: h+ k = 2n
h00: h = 2n
0k0: k = 2n

Special: as above, plus

4 e m . . 0,y,z 0, ȳ,z no extra conditions

4 d . m . x,0,z x̄,0,z no extra conditions

4 c . . 2 1
4 ,

1
4 ,z

1
4 ,

3
4 ,z hkl: h = 2n

2 b m m 2 0, 1
2 ,z no extra conditions

2 a m m 2 0,0,z no extra conditions

Symmetry of special projections
Along [001] c2mm
a′ = a b′ = b
Origin at 0,0,z

Along [100] p1m1
a′ = 1

2 b b′ = c
Origin at x,0,0

Along [010] p11m
a′ = c b′ = 1

2 a
Origin at 0,y,0
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P21/c C5
2h 2/m Monoclinic

No. 14 P121/c1 Patterson symmetry P12/m1

UNIQUE AXIS b, CELL CHOICE 1

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1
4 ; 0 ≤ z ≤ 1

Symmetry operations

(1) 1 (2) 2(0, 1
2 ,0) 0,y, 1

4 (3) 1̄ 0,0,0 (4) c x, 1
4 ,z

252
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CONTINUED No. 14 P21/c

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄,y+ 1
2 , z̄+

1
2 (3) x̄, ȳ, z̄ (4) x, ȳ+ 1

2 ,z+
1
2 h0l: l = 2n

0k0: k = 2n
00l: l = 2n

Special: as above, plus

2 d 1̄ 1
2 ,0,

1
2

1
2 ,

1
2 ,0 hkl: k+ l = 2n

2 c 1̄ 0,0, 1
2 0, 1

2 ,0 hkl: k+ l = 2n

2 b 1̄ 1
2 ,0,0

1
2 ,

1
2 ,

1
2 hkl: k+ l = 2n

2 a 1̄ 0,0,0 0, 1
2 ,

1
2 hkl: k+ l = 2n

Symmetry of special projections
Along [001] p2gm
a′ = ap b′ = b
Origin at 0,0,z

Along [100] p2gg
a′ = b b′ = cp

Origin at x,0,0

Along [010] p2
a′ = 1

2 c b′ = a
Origin at 0,y,0
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P21/c C5
2h 2/m Monoclinic

No. 14
UNIQUE AXIS b, DIFFERENT CELL CHOICES

P121/c1

UNIQUE AXIS b, CELL CHOICE 1

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1
4 ; 0 ≤ z ≤ 1

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄,y+ 1
2 , z̄+

1
2 (3) x̄, ȳ, z̄ (4) x, ȳ+ 1

2 ,z+
1
2 h0l: l = 2n

0k0: k = 2n
00l: l = 2n

Special: as above, plus

2 d 1̄ 1
2 ,0,

1
2

1
2 ,

1
2 ,0 hkl: k+ l = 2n

2 c 1̄ 0,0, 1
2 0, 1

2 ,0 hkl: k+ l = 2n

2 b 1̄ 1
2 ,0,0

1
2 ,

1
2 ,

1
2 hkl: k+ l = 2n

2 a 1̄ 0,0,0 0, 1
2 ,

1
2 hkl: k+ l = 2n
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CONTINUED No. 14 P21/c

P121/n1

UNIQUE AXIS b, CELL CHOICE 2

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1
4 ; 0 ≤ z ≤ 1

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄+ 1
2 ,y+

1
2 , z̄+

1
2 (3) x̄, ȳ, z̄ (4) x+ 1

2 , ȳ+
1
2 ,z+

1
2 h0l: h+ l = 2n

0k0: k = 2n
h00: h = 2n
00l: l = 2n

Special: as above, plus

2 d 1̄ 1
2 ,0,0 0, 1

2 ,
1
2 hkl: h+ k+ l = 2n

2 c 1̄ 1
2 ,0,

1
2 0, 1

2 ,0 hkl: h+ k+ l = 2n

2 b 1̄ 0,0, 1
2

1
2 ,

1
2 ,0 hkl: h+ k+ l = 2n

2 a 1̄ 0,0,0 1
2 ,

1
2 ,

1
2 hkl: h+ k+ l = 2n

P121/a1

UNIQUE AXIS b, CELL CHOICE 3

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1
4 ; 0 ≤ z ≤ 1

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄+ 1
2 ,y+

1
2 , z̄ (3) x̄, ȳ, z̄ (4) x+ 1

2 , ȳ+
1
2 ,z h0l: h = 2n

0k0: k = 2n
h00: h = 2n

Special: as above, plus

2 d 1̄ 0,0, 1
2

1
2 ,

1
2 ,

1
2 hkl: h+ k = 2n

2 c 1̄ 1
2 ,0,0 0, 1

2 ,0 hkl: h+ k = 2n

2 b 1̄ 1
2 ,0,

1
2 0, 1

2 ,
1
2 hkl: h+ k = 2n

2 a 1̄ 0,0,0 1
2 ,

1
2 ,0 hkl: h+ k = 2n
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P21/c C5
2h 2/m Monoclinic

No. 14 P1121/a Patterson symmetry P112/m

UNIQUE AXIS c, CELL CHOICE 1

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1
4

Symmetry operations

(1) 1 (2) 2(0,0, 1
2 )

1
4 ,0,z (3) 1̄ 0,0,0 (4) a x,y, 1

4
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CONTINUED No. 14 P21/c

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄+ 1
2 , ȳ,z+

1
2 (3) x̄, ȳ, z̄ (4) x+ 1

2 ,y, z̄+
1
2 hk0: h = 2n

00l: l = 2n
h00: h = 2n

Special: as above, plus

2 d 1̄ 1
2 ,

1
2 ,0 0, 1

2 ,
1
2 hkl: h+ l = 2n

2 c 1̄ 1
2 ,0,0 0,0, 1

2 hkl: h+ l = 2n

2 b 1̄ 0, 1
2 ,0

1
2 ,

1
2 ,

1
2 hkl: h+ l = 2n

2 a 1̄ 0,0,0 1
2 ,0,

1
2 hkl: h+ l = 2n

Symmetry of special projections
Along [001] p2
a′ = 1

2 a b′ = b
Origin at 0,0,z

Along [100] p2gm
a′ = bp b′ = c
Origin at x,0,0

Along [010] p2gg
a′ = c b′ = ap

Origin at 0,y,0
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P21/c C5
2h 2/m Monoclinic

No. 14
UNIQUE AXIS c, DIFFERENT CELL CHOICES

P1121/a

UNIQUE AXIS c, CELL CHOICE 1

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1
4

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄+ 1
2 , ȳ,z+

1
2 (3) x̄, ȳ, z̄ (4) x+ 1

2 ,y, z̄+
1
2 hk0: h = 2n

00l: l = 2n
h00: h = 2n

Special: as above, plus

2 d 1̄ 1
2 ,

1
2 ,0 0, 1

2 ,
1
2 hkl: h+ l = 2n

2 c 1̄ 1
2 ,0,0 0,0, 1

2 hkl: h+ l = 2n

2 b 1̄ 0, 1
2 ,0

1
2 ,

1
2 ,

1
2 hkl: h+ l = 2n

2 a 1̄ 0,0,0 1
2 ,0,

1
2 hkl: h+ l = 2n
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CONTINUED No. 14 P21/c

P1121/n

UNIQUE AXIS c, CELL CHOICE 2

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1
4

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄+ 1
2 , ȳ+

1
2 ,z+

1
2 (3) x̄, ȳ, z̄ (4) x+ 1

2 ,y+
1
2 , z̄+

1
2 hk0: h+ k = 2n

00l: l = 2n
h00: h = 2n
0k0: k = 2n

Special: as above, plus

2 d 1̄ 0, 1
2 ,0

1
2 ,0,

1
2 hkl: h+ k+ l = 2n

2 c 1̄ 1
2 ,

1
2 ,0 0,0, 1

2 hkl: h+ k+ l = 2n

2 b 1̄ 1
2 ,0,0 0, 1

2 ,
1
2 hkl: h+ k+ l = 2n

2 a 1̄ 0,0,0 1
2 ,

1
2 ,

1
2 hkl: h+ k+ l = 2n

P1121/b

UNIQUE AXIS c, CELL CHOICE 3

Origin at 1̄

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1
4

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates Reflection conditions

General:

4 e 1 (1) x,y,z (2) x̄, ȳ+ 1
2 ,z+

1
2 (3) x̄, ȳ, z̄ (4) x,y+ 1

2 , z̄+
1
2 hk0: k = 2n

00l: l = 2n
0k0: k = 2n

Special: as above, plus

2 d 1̄ 1
2 ,0,0

1
2 ,

1
2 ,

1
2 hkl: k+ l = 2n

2 c 1̄ 0, 1
2 ,0 0,0, 1

2 hkl: k+ l = 2n

2 b 1̄ 1
2 ,

1
2 ,0

1
2 ,0,

1
2 hkl: k+ l = 2n

2 a 1̄ 0,0,0 0, 1
2 ,

1
2 hkl: k+ l = 2n
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