Detectors for single-crystal area detector diffractometers

Mathias Meyer

X-ray Group Software Manager

RIGAKU OXFORD DIFFRACTION

Rigaku, founded in 1951, are well respected for the high performance and stable rotating anodes around the world.

- Our first rotating anode was built in 1952

Oxford Diffraction, in its many guises (Kuma, Varian, Agilent) has always retained they key people responsible for success in software, CCD design and the worlds first dual source systems

- The Gemini was launched at the IUCr in Florence 2004

A NEW BEGINNING

The joining of Rigaku and Oxford opens up a realm of possibilities, the merging of superior hardware, software and expertise will allow for an exciting future in single crystal diffraction. The merging of the two groups is represented in our new logo which takes elements from both.

Expertise from both R&D groups is now shared providing an exciting future for single crystal X-ray diffraction

Roots PhD at UNIL 1992...

Frustration 1993: incommensurates

Figure 2

Reconstruction of the reciprocal plane h2l in γ -sodium carbonate. The intersections of dotted and solid white lines correspond to main reflections systematically absent as a result of the C centering. The white circle shows the position of the fifth-order satellite 2215. This reflection is visible in the insert showing the corresponding area on a different scale.

340 Michal Dusek et al. • Sodium carbonate revisited

Efficiently measure incommensurate samples?

2

Efficiently measure incommensurate samples?

(McIntyre, Neutron News 2, 1992, 15)

A 'Gedankenexperiment'

- We build an area detector diffractometer
- Have source
- Have goniometer
- Have an 'ideal detector'

A 'Gedankenexperiment'

The 'ideal' detector

The 'ideal' detector

- What should it do?
 - Experiments at Cu, Mo, Ag, synchrotron?
 - Samples 1µm to 1mm
 - Fast, precise
- What kind of properties
 - Size
 - Resolution
 - 'Color': Energy
 - Detectivity
 - Speed
 - Practical operation
 - Price

Jim Pflugrath once said: "The ideal detector tells you where every photon landed and when."

XtaLAB Synergy S/R with HyPix6000HE

- ACA 2016 launch HyPix 6000
 - 100 microns resolution with top-hat PSF
 - 100Hz shutterless with near 0 dead-time
 - 10 deg/sec top dc speed, very fast positioning
 - PhotonJet sources
 - WIT in 17s
 - Full mmm data set in ~2min
 - P1 = full sphere in <15min

Synergy R and HyPix6000HE: 100µm pixel, 100Hz operation, 10deg/s scans

The 'real' detectors SX AD

*adapted from: P Allé, E Wenger, S Dahaoui, D Schaniel and C Lecomte: 'Comparison of CCD, CMOS and Hybrid Pixel x-ray detectors: detection principle and dataquality' Phys. Scr. **91** (2016) 063001

The 'real' detectors SX AD

Charge integrating detectors

Event counters: HPAD, HPC – Hybrid pixel counters

*adapted from: P Allé, E Wenger, S Dahaoui, D Schaniel and C Lecomte: 'Comparison of CCD, CMOS and Hybrid Pixel x-ray detectors: detection principle and dataquality' Phys. Scr. **91** (2016) 063001

Detecting X-rays with a CCD Integrative detector

The closest thing to an ideal detector...

Direct Detection of X-rays in silicon sensor

 \rightarrow Point Spread Function of 1 pixel

Single Photon-counting in CMOS

VOW

Comp

20 bit Counter

 \rightarrow no readout noise & dark current \rightarrow high dynamic range (20 bit) \rightarrow fast readout

CMOS: Complementary metal–oxide–semiconductor

- CMOS is only a production technology
- CMOS based detectors can be very different

adapted from: Dectris

Key Features of HPC Detectors

- Direct detection of X-ray photons no conversion to light
- Excellent point spread function top hat

adapted from: Dectris

Key Features of HPC Detectors (Pilatus)

- Excellent signal-to-noise ratio via single photon counting
- Adjustable threshold to suppress
 fluorescence
- High dynamic range: 1:1,048,576
 photons *per pixel*
- High counting rages: up to 2 x 10⁶ photons per second *per pixel*
- Short readout time: 7 ms
- Frame rate up to 20 images per second

Readout pixel

Single Photon-counting in CMOS

→ no readout noise & dark current
→ high dynamic range (20 bit)
→ fast readout

adapted from: Dectris

The 'real' detectors SX AD

Integrative detectors ,CPAD'		Event counters ,HPAD' HPC – Hybrid pixel counters	
Indirect detection via X-ray scintillator		Direct detection via photo-electric effect	
Light conduction via taper/fiber glass		-	
Light detection ,Integrating'		Charge detection ,Photon counting	
CCD	CMOS	-	
FET->ADC->memory		Memory	
No energy discrimination		Energy thresholds	

The 'real' detectors SX AD

	Integrative detectors ,CPAD'		Event counters ,HPAD' HPC – Hybrid pixel counter	rs
	Indirect detection via X-ray scintillator		Direct detection via photo-electric effect	c –
	Light conduction via taper/fiber glass Light detection		-	
			Charge detection Photon counting	
	CCD	CMOS	-	
	FET->ADC->memory		Memory	
	No energy discrimination		Energy thresholds	
C				-0
	Rigaku			

C) X I

What is data quality?

The single crystal diffraction experiment

The single crystal diffraction experiment

Importance of weak data

- Make a typical experiment
 - Cu radiation
 - Resolution 0.78Ang
 - (I/sig)_{mean} = 15 to 0.837Ang (IUCR)

Importance of weak data

- Make a typical experiment
 - Cu radiation
 - Resolution 0.78Ang
 - (I/sig)_{mean} = 15 to 0.837Ang (IUCR)

Importance of weak data Histogram of data

Importance of weak data Histogram of data

Importance of weak data Histogram of data

*Hirshfeld, F.L.; Rabinowich, D. *Treating Weak Reflexions in Least-Squares Calculations.* Acta Crystallogr. 1973, **A29**, 10–513.;Arnberg, L.; Hovmöller, S.; Westman, S. On the Significance of 'Non-Significant' Reflexions. Acta Crystallogr. 1979, **A35**, 497–499.

Detective Quantum Efficiency (DQE)

M. Stanton et al., J. Appl. Cryst. (1992). 25, 638-645

DQE: Cu and Mo

Importance of weak data Comparison of tech

Importance of weak data Comparison of tech

Importance of weak data

Comparison of tech

oxford diffraction

Importance of weak data

Comparison of tech

Importance of weak data Charge density

- Make a typical experiment
 - Mo radiation
 - Resolution 0.45Ang
 - Diffraction limit set to 0.5Ang -> (l/sig)_{mean} = 2
 - To get this we pump I:
 - (I/sig)_{mean} = 35 to 0.837Ang (IUCR)

Importance of weak data

Conclusion

Atlas S2 CCD vs. APS CMOS

Comparative Tests

Oxford Diffraction R&D have designed, built and tested a CMOS detector of identical internal construction to a commercially available model

Feature	Atlas S2 CCD	APS CMOS (Oxford Diffraction R&D)
Active area, Taper	100x100mm, taper 2:1	100x100mm, taper 1:1
Gain [e ⁻ /ΜοΚα]	180	261
Sensor	Truesense* Imaging CCD	Teledyne Dalsa RadEye 100 CMOS
Noise [MoKα-photons]	~0.05	∼0.5 *Formerly Kodak

CCD vs. APS CMOS

Comparative Detectivity Measurements

CCD vs. APS CMOS

Comparative Detectivity Measurements

• The filter has been chosen in such a way as to observe single photon events

• In order to visualize signal-to-noise differences 100 images are averaged and scaled so that the noise level is the same for all modes of operation

CCD vs. APS CMOS

Comparative Detectivity Measurements

HW – Detector technology: Key metrics

- Detectivity
- Dynamic range
- Speed
- Size
- Price

Smart Sensitivity Control (SSC)

- Self-optimizing detector amplification based on strength of observed data (similar to ISO settings in digital photography)
- Standard, Medium and High SSC modes
- Maximises dynamic range for strong data
- Improvement in signal-to-noise for weak data
- A unique feature of Rigaku Oxford Diffractions CCD X-ray detectors

Instant-switching hardware binning:

- Adjustable pixel sizes for variable resolution
- Flexibility in dynamic range
- Fast re-measurement of overflowed reflections
- Theta-dependent binning
- Automatic software switches binning modes **instantly**

Higher spatial resolution Larger dynamic range Lower detectivity Longer processing time Larger files

Lower spatial resolution Smaller dynamic range Higher detectivity Shorter processing time Smaller files

				(Crys	Alis
nt sell for Strology Calculation (CSIII, 17.4510.)		l inconstantes		-		
un staata) avada) tersettinkaovatokaovatskaovatokaatti.	OP IN	• • 85.71% (67 of 70 refle	ettiona)		ersse Water	-
● Resolution ⊂ Theta ⊂ 2Theta 0.837	Time prediction Fill bri Fill bri Fill bri	based on data to 0.837 Ang e gma	1.00	135.62	111 A	
Laue group: Other mmm. T Fredel mates are equivalent (undreck for high quality absolute configuration data)	i⊂ The s: i● Differe	me time for all thete positions nt time for each thete positions F8.007	your time:	Individual Visigma:	merged Vsigme:	theta binning:
Detector Distance 45.00	Advanced	[+42,50; 55,26]	2.35	25.48	32.29	112
rateou mode		[-42.50] 110.53]	7.35	8.35	8.80	-
Complete data (default mode)	Predicted r Scan width	esolution beyond 0.84 ; 1.00 To	al Vsigma: Use 1	15.79	22.13	. .
ment Strategy to, runs/frames: 12/553		ng 84 Correlated frames	<	Actuations	i i i en Cryst R	and
Amerit Stransgy to, runs/frames: 12/553 fotal experiment time: 0h 36m imported experiment finish time: Mon Oct 21 11:57:53 2013	date New Strategy	Correbbed frames		Arnoberta	Line Cryster	
ament Strategy No. runs/frames: 12/553 Fotal experiment time: 0h 36m Expected experiment finish time: Mon Oct 21 11:57:53 2013	fate New Strategy	Full sphere (P1)		Artistetti	i i e Cryst R	
innert Stanleyv ito, nuns/frames: 12/553 iotal experiment time: 0h 36m expected experiment finish time: Mon Oct 21 11:57:53 2013 Completeness/Coverage curves Completeness in mirm	Ante New Strategy date Completeness	Full sphere (P 1)		Antochertos	-1	Redux
An runs Strategy to, runs / frames: 12/553 otal experiment time: 0h 36m apocted experiment finish time: Mon Oct 21 11:57:53 2013 • Completeness/Coverage ourves Completeness in mirrin	Ante New Strategy date Complements 20 20 20 20 20 20 20 20 20 20 20 20 20	Full sphere (P1)		Annoheman	-1	Redundancy h
In runs/frames: 12/553 Total experiment time: 0h 36m Expected experiment finish time: Mon Oct 21 11:57:53 2013 • Completeness/Coverage tables Completeness in mirrin	Ante New Strategy date Conjunction 20 8020 Rodundary 1.8 Rodundary 1.6 for conj 1.4 go - 1.4 go -	Full sphere (P1)				Redundancy for con
nerr Strategy to, runs/frames: 12/553 otal experiment time: 0h 36m apocted experiment finisk time: Mon Oct 21 11:57:53 2013	20 20 20 20 20 20 20 20 20 20	Full sphere (P1)				et

Riaaku

oxford diffraction

If the user modifies one of the suggested settings, 'Auto suggest' link appears, which allows him to re-enable automatic suggestions

Strategy

Intelligent Measurement System – IMS for CCD

HPC – Hybrid Pixel Counters:

- HPC detectors deliver excellent data quality due to high dynamic range and superb signal-to-noise
 - No rescans required to correct for overloads or to measure strong data
- Signal threshold reduces noise from fluorescence
- Shutterless data collection
 - Simplifies measurement setup
 - Improves data quality
 - Can dramatically shorten wall time
- Top-hat point spread function means better spatial resolution for reflections

Single pixel point spread function

Fine slicing and count rate correction

oxford diffraction

HPADs are rate meters! To integrate they require rate correction! Simple rate correction requires near constant signal

Rate = counts/time

Mueller et al., Acta Cryst. (2012). D68, 42-56: Optimal fine phi-slicing for single-photon-counting pixel detectors

HPC – IMS: Feature

Feature:

- Strong reflections may be affected by coincidence-loss (dead time correction): rates > 400k/pix.s
- Fine-slicing may be required for more accurate countrate correction

- Excessive fine slicing may yield photon loss due to (even) short dead or readout time
- In shutterless mode no re-measurement possible
- Pixels exceeding count-rate or absolute counter limit will be treated as overflows

Data quality and count rates Coincidence loss

Mueller et al., Acta Cryst. (2012). D68, 42-56: Optimal fine phi-slicing for single-photon-counting pixel detectors

oxford diffraction

Optimal fine phi-slicing for single-photon-counting pixel detectors

Mueller et al., Acta Cryst. (2012). D68, 42-56: Optimal fine phi-slicing for single-photon-counting pixel detectors

Fine slicing and count rate correction

Important feature: No matter what scan speed we use the local angular rates stay!

Mueller et al., Acta Cryst. (2012). D68, 42-56: Optimal fine phi-slicing for single-photon-counting pixel detectors

New Hybrid Photon Counting Detector HyPix6000HE – (near) Zero Dead-Time Mode+100Hz

HPC – Hybrid Pixel Counters: IMS

New 39

The optimal data collection frequency is suggested from the preexperiment evaluation and the user selected exposure time

HPC – IMS

- Detector may operate at higher frequency than CrysAlisPro frame rate
- Accumulation of detector frames (high freq) into final frames (lower frequency) is done in memory at acquisition time

oxford diffraction

HW – Sources

Same sample 0.3mm, normal tubes (2kW, 0.5mm collimator), micro-focus (50W), 007HF (1200W)

Source type	Integral intensity relative Enhance Mo
Enhance Mo	1
Enhance Cu	5
Ultra Cu	40
Nova Cu 2 nd gen	240
PhotonJet S Cu	480
PhotonJet R Cu	Up to 3000

HW – Fullwell/Dynamic

Detector generation	Full well X _{ph}	Relative	
KM4CCD, Sapphire 2x2	10'000	1	*******
Ruby 2x2	2'500	0.25	111/5000
Atlas 2x2	3'000	0.3	1111 manual
Atlas – S2 4x4	48'000	4.8	and the second s
Pilatus 200K	2 ²⁰ =1'000'000	100	
HyPix 6000HE	2 ³² =4'000'000'000	40000	

HW – Detector Speed

Detector generation	FPS	Relative	
KM4CCD, Sapphire 512 ²	0.1	1	
Ruby 512 ²	0.21	2	11/100
Atlas 512 ²	0.7	7	
Atlas – S2 512 ²	1.4	14	A CONTRACTOR
Pilatus 200K	20 shutterless 86% duty cycle	200	
HyPix 6000HE	100 shutterless ~100% duty cycle	100	

HW – Detector Size

Detector relative size	Unique speed	Observation speed
Eos 1	1	1
Atlas 2.4	1.3-1.6	1.6-1.8
Titan 3.7	1.4-1.8	2.0-2.2

'What is this?' tool

- Available after screening
- Only requires compound elements
- Uses AutoChem2.1/3.0
- Uses up to 5deg/s (CCD) or 10deg/s (HPAD) scan speed!

What is this?' tool: 70s later...

New

38

What is this?' tool: Connectivity solved! <70s

38

XtaLAB Synergy: PhotonJet R, HyPix6000HE

XtaLAB Synergy and HyPix6000HE: 100µm pixel, 100Hz operation, 10deg/s scans

exp_158 - CrysAlisPro Ionline) XtaLAB Synergy R system - CCD view DA	yeergyZerp_158iwt_exp_158.per (19.8a)				1
kV: 40.00 mA: 30.00 Interlock open (HV). Please press 'HV ON/Start' but	ion, Sample light on		-	START/STOP	
			SEL.	CAM @ CRYO @ X-	AAY STATU
				CCD Ready	
			2 6 2	RED Ready	
			-	Crystal con	8
				ELEVERANCE STR. AND A	
				CHUS 2400	
				Current cm1, 0012 1, 0012 1, 14,177 0.1872 8, 0013 14,4177 0.1181 80,1 90,4181 V = 1002.0881	
				PEAK TABLE IIII FOR with 0 and nut of 0 (total 0.3550000(0) (0.000)	
Not the second second					
남편 봐요? 남희로운 것 ㅋ					
				Data Collection	
				Data Reduction	
				AutoChem	
MAGE wit exp_158_2_72.rodhypix (run: 2 frame- Omega: 52.72 Theta: 55.47 Kappa: 0.00 Ph	72) i: 164.00 Distance: 32.50			Rigalcu	
GONIOMETER: Omega: 0.00 Theta: 35.00 Kappa: 0.00 Phy	: 0.00 Distance, 32.50			Sectord diff:	action
		2 2 2 2 2 2 2	-	Contract of the second	144

oxford diffraction

A combination of leading edge components and user-inspired software tied together through a highly parallelized architecture to produce fast, precise data in an intelligent fashion.

NEW PhotonJet sources – our 3rd generation microfocus X-ray sources

NEW goniometer – with motor speeds which have been **doubled**

Closer sample to detector distance

The widest range of available detectors to suit. CCD or HPC? Your choice.

Unique telescoping 20 arm provides total flexibility for your diffraction experiment.

Enhanced kappa goniometer design with symmetrical 2θ positioning

These results highlight the benefits of the new, faster goniometer, the closer detector distance and increase in source flux of the microfocus source with the Atlas S2 detector.

Ylid data collection IUCR in minimum time

For comparison: SN Atlas: 52mm = 12mins

	Atlas – speed 2deg/s			Pilatus 200k – 5deg/s			HyPix 6000HE – 10deg/s		
Distance [mm]	Time [min]	Runs	Frames	Time [min]	Runs	Frames	Time [min]	Runs	Frames
35	5	8	338	3	13	495	2	9	483
45	5	7	350	3	13	539	2	12	586
55	7	10	412	4	17	679	3	17	814

Thank you for listening!

Find out more at

www.rigaku.com

Support of Rigaku instruments via CAP

– Step 2 - Choose Machine	platform XtaLAB PRO Kappa	•				
Source	n/a	 Controller: 	CrysAlisPro	[
	n/a					
Detector	MM007 Cu	Si layer:	n/a 💌			17 A
Goniometer	MM007 Mo MM007DW CuMo MM003 Cu (home) SST Mo Fine (offset) MM003 Cu (home) MM003 Mo (offset) MM003 Ag (home) SST Mo Fine (offset)			Instruction	Previous step	
- Chan Q. Evenavia	MM003 Cu (home)					
Loteb o - exheur	(MINOUS MU (UTSEC)					•
Step 2 - Choose	e platform					
Machine	XtaLAB mini	•			1	
Source	SST Mo 600W	Controller:	CrysAlisPro 💌]	1	
Detector	MERCURY3	•				
Goniometer	n/a	-		_		
				Instruction	Previous step	Next step

