Eval15

A.M.M. Schreurs, X. Xian, L.M.J. Kroon-Batenburg, J. Appl. Cryst. (2010). 43, 70-82.

help

- Typing "help" will open a webpage with the manual.
- Typing "help commandname" will open a webpage with the manual entry for the commandname.

Example: "help focus"

General impact

Least squares (SVD)

$$\chi^{2} = \sum_{i=1}^{N} w_{i} \left[\rho_{i} - JP_{i} - \sum_{m}^{M} J_{m}P_{im} - ax_{i} - by_{i} - c \right]^{2}$$
$$I = J \sum_{i=1}^{N} P_{i} \qquad \qquad \sigma_{i} = \sqrt{\rho_{i} + bgnoise^{2}} \qquad w_{i} = \frac{1}{\sigma_{i}^{2}}$$

Standard deviation of integrated reflection

$$\sigma_I^2 = \sigma_J^2 \left(\sum_{i=1}^N P_i\right)^2$$

$$fom_{box} = \left| \frac{\sum_{i=1}^{N} w_i (\rho_i - \rho_i^{calc})^2}{\frac{i=1}{N - N_p}} \right|$$

Variances and co-variances available

Configuration files

- detector.pic
- focus.pic
- refine.pic
- simulation.pic
- spectrum.pic
- crystal.pic
- mosaic.pic
- [eval15.init]

Read boxfile

- The command "read" opens a boxfile
- Example: read 1 100 opens the first boxfile reads reflection number 100 displays the reflection graphically

pq

- With the command "pq" the program will search for the next reflection with I/ σ >10
- reflections with error flags (overflow, overlap, etc.) will be skipped

Refinement variables

- The command "free" makes a variable refinable
- Example: free mosaic
- Only useful to determine parameters for the configuration files
- For the final intensity determination, use only free shextra

refine

- With the command "refine" all free variables are refined
- Target function: fombox

onescan

- The command "onescan" iterates a variable from startvalue to stopvalue
- Example: refine (to refine impact position) distribution type onescan distribution plot onescan mosaic 0.05 0.1 1.0 (increment 0.05, startvalue 0.1, stopvalue 1.0)

onescan

Minimum at mosaic = 0.25 for this reflection

mosaic

- The description of the mosaicity is given in the file mosaic.pic
 - Isotropic mosaicity
 - Anisotropic mosaicity (animo, anivec)
- With mosaicadd you can prepare a "mosaicity spectrum"
- The "mosaic spectrum" is a possibility to handle cracked crystals.

spectrum

- The X-ray spectrum of the primary beam is described in the file spectrum.pic
- You can add additional wavelengths using the command "lamdaadd"
- The command "show lambda" prints the current values
- With "distribution type lambda" and "distribution plot" you obtain a graphical output.

distribution plot

printslices

- With the command "printsclices" it is possible to print pixel intensities on the screen
- Example: printslices simulated on go
- With "slicewrite" you can write the pixel intensities to a file

printslices

==== frame 5	= simulated ====																								
	1	2	3	4	5	6	7	8	9	1	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2	2	23	24	25
25 l	==;							===:	====:		====		===:						==:						
24																									
23 j																									
22 j																									
21																									
20																									
19																									
18																									
17												្ន	-												
16										2	2	1	2	-											
15									1	20	50	26	11	1											
14							2	Λ	33	29	2/0	20	20	4	1										
12 1					2	5	6	10	147	364	348	140	23	2	т										
11 1				2	4	4	17	17	128	325	206	67	23	1											
10 i				1	1	3	4	7	22	93	75	17	11												
9 j				1		2	1	2	1	8	4	3													
8 j										1	2		1	1											
7														1											
6																									
5																									
4																									
3																									
2																									
mini	n 111	m (a (а,	na	vir	nıım	36	10	sum '	2870	0 m	ean	4	50	22	c .	ia	nə	30		561	1		

program "refl3d" (part of the Eval suite)